Autonomous Detection of Mouse-Ear Hawkweed Using Drones, Multispectral Imagery and Supervised Machine Learning

被引:12
|
作者
Amarasingam, Narmilan [1 ,2 ,3 ]
Hamilton, Mark [4 ]
Kelly, Jane E. [5 ]
Zheng, Lihong [5 ]
Sandino, Juan [2 ]
Gonzalez, Felipe [1 ,2 ]
Dehaan, Remy L. [5 ]
Cherry, Hillary [4 ]
机构
[1] Queensland Univ Technol QUT, Fac Engn, Sch Elect Engn & Robot, 2 George St, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, QUT Ctr Robot, 2 George St, Brisbane, Qld 4000, Australia
[3] South Eastern Univ Sri Lanka, Fac Technol, Dept Biosyst Technol, Univ Pk, Oluvil 32360, Sri Lanka
[4] NSW Dept Planning & Environm, 12 Darcy St, Parramatta, NSW 2150, Australia
[5] Charles Sturt Univ, Gulbali Inst Agr Water & Environm, Boorooma St, Wagga Wagga, NSW 2678, Australia
关键词
artificial intelligence; drone; hawkweed; remote sensing; weed detection; SUPPORT VECTOR MACHINE; WEED DETECTION; VEGETATION INDEXES; UAV; CLASSIFICATION; NETWORKS; CROPS; RGB;
D O I
10.3390/rs15061633
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hawkweeds (Pilosella spp.) have become a severe and rapidly invading weed in pasture lands and forest meadows of New Zealand. Detection of hawkweed infestations is essential for eradication and resource management at private and government levels. This study explores the potential of machine learning (ML) algorithms for detecting mouse-ear hawkweed (Pilosella officinarum) foliage and flowers from Unmanned Aerial Vehicle (UAV)-acquired multispectral (MS) images at various spatial resolutions. The performances of different ML algorithms, namely eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbours (KNN), were analysed in their capacity to detect hawkweed foliage and flowers using MS imagery. The imagery was obtained at numerous spatial resolutions from a highly infested study site located in the McKenzie Region of the South Island of New Zealand in January 2021. The spatial resolution of 0.65 cm/pixel (acquired at a flying height of 15 m above ground level) produced the highest overall testing and validation accuracy of 100% using the RF, KNN, and XGB models for detecting hawkweed flowers. In hawkweed foliage detection at the same resolution, the RF and XGB models achieved highest testing accuracy of 97%, while other models (KNN and SVM) achieved an overall model testing accuracy of 96% and 72%, respectively. The XGB model achieved the highest overall validation accuracy of 98%, while the other models (RF, KNN, and SVM) produced validation accuracies of 97%, 97%, and 80%, respectively. This proposed methodology may facilitate non-invasive detection efforts of mouse-ear hawkweed flowers and foliage in other naturalised areas, enabling land managers to optimise the use of UAV remote sensing technologies for better resource allocation.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Wind Turbine Blade Damage Detection Using Supervised Machine Learning Algorithms
    Regan, Taylor
    Beale, Christopher
    Inalpolat, Murat
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2017, 139 (06):
  • [42] Content Based Fraudulent Website Detection Using Supervised Machine Learning Techniques
    Maktabar, Mahdi
    Zainal, Anazida
    Maarof, Mohd Aizaini
    Kassim, Mohamad Nizam
    HYBRID INTELLIGENT SYSTEMS, HIS 2017, 2018, 734 : 294 - 304
  • [43] Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection
    Abu Taher, Kazi
    Jisan, Billal Mohammed Yasin
    Rahman, Md. Mahbubur
    2019 1ST INTERNATIONAL CONFERENCE ON ROBOTICS, ELECTRICAL AND SIGNAL PROCESSING TECHNIQUES (ICREST), 2019, : 643 - 646
  • [44] Machine Learning-Based Detection of Icebergs in Sea Ice and Open Water Using SAR Imagery
    Jafari, Zahra
    Bobby, Pradeep
    Karami, Ebrahim
    Taylor, Rocky
    REMOTE SENSING, 2025, 17 (04)
  • [45] Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks
    Weinstein, Ben G.
    Marconi, Sergio
    Bohlman, Stephanie
    Zare, Alina
    White, Ethan
    REMOTE SENSING, 2019, 11 (11)
  • [46] Estimation of Crop Biomass and Leaf Area Index from Multitemporal and Multispectral Imagery Using Machine Learning Approaches
    Gahrouei, Omid
    McNairn, Heather
    Hosseini, Mehdi
    Homayouni, Saeid
    CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (01) : 84 - 99
  • [47] Phenotyping for heat stress tolerance in wheat population using physiological traits, multispectral imagery, and machine learning approaches
    Sharma, Neelesh
    Kumar, Manu
    Daetwyler, Hans D.
    Trethowan, Richard M.
    Hayden, Matthew
    Kant, Surya
    PLANT STRESS, 2024, 14
  • [48] Semi-Automated Semantic Segmentation of Arctic Shorelines Using Very High-Resolution Airborne Imagery, Spectral Indices and Weakly Supervised Machine Learning Approaches
    Aryal, Bibek
    Escarzaga, Stephen M.
    Vargas Zesati, Sergio A.
    Velez-Reyes, Miguel
    Fuentes, Olac
    Tweedie, Craig
    REMOTE SENSING, 2021, 13 (22)
  • [49] Predicting canopy chlorophyll concentration in citronella crop using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery
    Khan, Mohammad Saleem
    Yadav, Priya
    Semwal, Manoj
    Prasad, Nupoor
    Verma, Rajesh Kumar
    Kumar, Dipender
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 219
  • [50] Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery
    Narmilan, Amarasingam
    Gonzalez, Felipe
    Salgadoe, Arachchige Surantha Ashan
    Kumarasiri, Unupen Widanelage Lahiru Madhushanka
    Weerasinghe, Hettiarachchige Asiri Sampageeth
    Kulasekara, Buddhika Rasanjana
    REMOTE SENSING, 2022, 14 (05)