Simulation of low-temperature brittle fracture of asphalt mixtures based on phase-field cohesive zone model

被引:14
|
作者
Han, Dongdong [1 ]
Liu, Guoqiang [2 ]
Xi, Yinfei [3 ]
Xia, Xu [1 ]
Zhao, Yongli [1 ]
机构
[1] Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] Monash Univ, Civil Engn Dept, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
Asphalt mixture; Phase-field CZM; interface CZM; Homogeneous; Heterogeneous; CONTINUUM DAMAGE MODEL; CRACK-PROPAGATION; CONCRETE; PERFORMANCE;
D O I
10.1016/j.tafmec.2023.103878
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, a phase-field cohesive zone model (CZM) was presented to simulate the low-temperature brittle fracture of asphalt mixture by finite element method (FEM). The phase-field CZM was applied directly to simulate low-temperature homogeneous fracture of asphalt mixtures. Furthermore, a combination method was proposed for the heterogeneous fracture analysis of asphalt mixtures at low temperature. In this method, the phase-field CZM and the conventional interface CZM are used to simulate the cohesive fracture within the fine aggregate matrix (FAM) and the adhesive fracture at the FAM-aggregate interface, respectively. Then, the applicability of the phase-field CZM to simulate mixed-mode fracture in asphalt mixtures was analyzed by the single-edge notch beam tests with different notch offsets. Furthermore, the cohesive fracture simulation of asphalt mixture based on phase-field CZM and interface CZM was compared. The results indicate that the nu-merical results based on the phase-field CZM in both homogeneous and heterogeneous fracture analysis are in good agreement with the experimental results. The softening curve of the interface CZM gradually converges to that of the phase-field CZM as the adhesive stiffness increases. Under the same traction-separation law, the crack path predicted by the combination method is similar to that of the pure CZM method. However, the combination method shows a more pronounced brittle behavior of the material. In addition, the combination method has higher computational efficiency and requires less computational memory. In summary, this study provides an effective method to simulate homogeneous and heterogeneous brittle fracture of asphalt mixture at low temperatures.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Determining the low-temperature fracture toughness of asphalt mixtures
    Marasteanu, MO
    Dai, ST
    Labuz, JF
    Li, X
    BITUMINOUS PAVING MIXTURES 2002: MATERIALS AND CONSTRUCTION, 2002, (1789): : 191 - 199
  • [22] A phase-field formulation for cohesive fracture based on the Park-Paulino-Roesler (PPR) cohesive fracture model
    Muneton-Lopez, Rogelio A.
    Giraldo-Londono, Oliver
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2024, 182
  • [23] Direction-dependent fracture in solids: Atomistically calibrated phase-field and cohesive zone model
    Rezaei, Shahed
    Mianroodi, Jaber Rezaei
    Brepols, Tim
    Reese, Stefanie
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147
  • [24] Crack nucleation and propagation in the phase-field cohesive zone model with application to Hertzian indentation fracture
    Wu, Jian-Ying
    Huang, Yuli
    Nguyen, Vinh Phu
    Mandal, Tushar Kanti
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 241
  • [25] Phase-field regularised cohesive zone model for interface modelling
    Chen, L.
    de Borst, R.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 122
  • [26] A phase-field cohesive zone model integrated with cell-based smoothed finite element method for quasi-brittle fracture simulations of concrete at mesoscale
    Huang, Yu-jie
    Yang, Zhen-jun
    Zhang, Hui
    Natarajan, Sundararajan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 396
  • [27] Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture
    Mandal, Tushar Kanti
    Vinh Phu Nguyen
    Wu, Jian-Ying
    ENGINEERING FRACTURE MECHANICS, 2019, 217
  • [28] A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-Convergence and stress oscillations
    May, Stefan
    Vignollet, Julien
    de Borst, Rene
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2015, 52 : 72 - 84
  • [29] Crack propagation in quasi-brittle materials by fourth-order phase-field cohesive zone model
    Nguyen, Khuong D.
    Thanh, Cuong-Le
    Vogel, Frank
    Nguyen-Xuan, H.
    Abdel-Wahab, M.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 118
  • [30] An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture
    Gupta, Abhinav
    Krishnan, U. Meenu
    Mandal, Tushar Kanti
    Chowdhury, Rajib
    Vinh Phu Nguyen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399