Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation

被引:12
作者
Mehta, Bella [1 ,2 ]
Goodman, Susan [1 ,2 ]
DiCarlo, Edward [1 ,2 ]
Jannat-Khah, Deanna [1 ,2 ]
Gibbons, J. Alex B. [3 ]
Otero, Miguel [1 ,2 ]
Donlin, Laura [1 ,2 ]
Pannellini, Tania [2 ]
Robinson, William H. H. [4 ]
Sculco, Peter [1 ,2 ]
Figgie, Mark [1 ,2 ]
Rodriguez, Jose [1 ,2 ]
Kirschmann, Jessica M. M. [4 ]
Thompson, James [5 ]
Slater, David [5 ]
Frezza, Damon [5 ]
Xu, Zhenxing [2 ]
Wang, Fei [2 ]
Orange, Dana E. E. [1 ,6 ]
机构
[1] Hosp Special Surg, 535 E 70th St, New York, NY 10009 USA
[2] Weill Cornell Med, New York, NY 10021 USA
[3] Columbia Univ Vagelos Coll Phys & Surg, New York, NY USA
[4] Stanford Univ, Stanford, CA USA
[5] MITRE Corp, Mclean, VA USA
[6] Rockefeller Univ, New York, NY USA
关键词
Osteoarthritis; Rheumatoid arthritis; Synovial inflammation; Histology; Machine learning; MAST-CELLS; KNEE OSTEOARTHRITIS; CLASSIFICATION; CRITERIA; ASSOCIATION; SELECTION; TISSUES; SCORE;
D O I
10.1186/s13075-023-03008-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundWe sought to identify features that distinguish osteoarthritis (OA) and rheumatoid arthritis (RA) hematoxylin and eosin (H&E)-stained synovial tissue samples.MethodsWe compared fourteen pathologist-scored histology features and computer vision-quantified cell density (147 OA and 60 RA patients) in H&E-stained synovial tissue samples from total knee replacement (TKR) explants. A random forest model was trained using disease state (OA vs RA) as a classifier and histology features and/or computer vision-quantified cell density as inputs.ResultsSynovium from OA patients had increased mast cells and fibrosis (p < 0.001), while synovium from RA patients exhibited increased lymphocytic inflammation, lining hyperplasia, neutrophils, detritus, plasma cells, binucleate plasma cells, sub-lining giant cells, fibrin (all p < 0.001), Russell bodies (p = 0.019), and synovial lining giant cells (p = 0.003). Fourteen pathologist-scored features allowed for discrimination between OA and RA, producing a micro-averaged area under the receiver operating curve (micro-AUC) of 0.85 +/- 0.06. This discriminatory ability was comparable to that of computer vision cell density alone (micro-AUC = 0.87 +/- 0.04). Combining the pathologist scores with the cell density metric improved the discriminatory power of the model (micro-AUC = 0.92 +/- 0.06). The optimal cell density threshold to distinguish OA from RA synovium was 3400 cells/mm(2), which yielded a sensitivity of 0.82 and specificity of 0.82.ConclusionsH&E-stained images of TKR explant synovium can be correctly classified as OA or RA in 82% of samples. Cell density greater than 3400 cells/mm(2) and the presence of mast cells and fibrosis are the most important features for making this distinction.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Metabolomics of Synovial Fluid and Infrapatellar Fat Pad in Patients with Osteoarthritis or Rheumatoid Arthritis
    Nieminen, Petteri
    Hamalainen, Wilhelmiina
    Savinainen, Juha
    Lehtonen, Marko
    Lehtiniemi, Saara
    Rinta-Paavola, Juho
    Lehenkari, Petri
    Kaariainen, Tommi
    Joukainen, Antti
    Kroger, Heikki
    Paakkonen, Tommi
    Mustonen, Anne-Mari
    INFLAMMATION, 2022, 45 (03) : 1101 - 1117
  • [32] Metabolomics of Synovial Fluid and Infrapatellar Fat Pad in Patients with Osteoarthritis or Rheumatoid Arthritis
    Petteri Nieminen
    Wilhelmiina Hämäläinen
    Juha Savinainen
    Marko Lehtonen
    Saara Lehtiniemi
    Juho Rinta-Paavola
    Petri Lehenkari
    Tommi Kääriäinen
    Antti Joukainen
    Heikki Kröger
    Tommi Paakkonen
    Anne-Mari Mustonen
    Inflammation, 2022, 45 : 1101 - 1117
  • [33] Characteristics of the protease activity in synovial fluid from patients with rheumatoid arthritis and osteoarthritis
    Nakano, S
    Ikata, T
    Kinoshita, I
    Kanematsu, J
    Yasuoka, S
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 1999, 17 (02) : 161 - 170
  • [34] OPG and RANKL in serum and synovial fluids of patients with rheumatoid arthritis, osteoarthritis and spondylarthropathy
    O Krystufkova
    J Niederlova
    V Senolt
    M Hladikova
    S Ruzickova
    J Vencovsky
    Arthritis Res Ther, 5 (Suppl 1):
  • [35] Levels of lectin pathway proteins in plasma and synovial fluid of rheumatoid arthritis and osteoarthritis
    Ammitzboll, C. G.
    Thiel, S.
    Ellingsen, T.
    Deleuran, B.
    Jorgensen, Anette
    Jensenius, J. C.
    Stengaard-Pedersen, K.
    RHEUMATOLOGY INTERNATIONAL, 2012, 32 (05) : 1457 - 1463
  • [36] Cyclic adenosine 5′-monophosphate in synovial fluid of rheumatoid arthritis and osteoarthritis patients
    Jadranka Morovic-Vergles
    Melanie Ivana Culo
    Stjepan Gamulin
    Filip Culo
    Rheumatology International, 2008, 29 : 167 - 171
  • [37] Cyclic adenosine 5′-monophosphate in synovial fluid of rheumatoid arthritis and osteoarthritis patients
    Morovic-Vergles, Jadranka
    Culo, Melanie Ivana
    Gamulin, Stjepan
    Culo, Filip
    RHEUMATOLOGY INTERNATIONAL, 2008, 29 (02) : 167 - 171
  • [38] Kynurenic Acid in Synovial Fluid and Serum of Patients with Rheumatoid Arthritis, Spondyloarthropathy, and Osteoarthritis
    Parada-Turska, Jolanta
    Zgrajka, Wojciech
    Majdan, Maria
    JOURNAL OF RHEUMATOLOGY, 2013, 40 (06) : 903 - 909
  • [39] Levels of lectin pathway proteins in plasma and synovial fluid of rheumatoid arthritis and osteoarthritis
    C. G. Ammitzboll
    S. Thiel
    T. Ellingsen
    B. Deleuran
    Anette Jorgensen
    J. C. Jensenius
    K. Stengaard-Pedersen
    Rheumatology International, 2012, 32 : 1457 - 1463
  • [40] Clock gene expression in different synovial cells of patients with rheumatoid arthritis and osteoarthritis
    Becker, Tatjana
    Tohidast-Akrad, Makiyeh
    Humpeler, Susanne
    Gerlag, Danielle M.
    Kiener, Hans-Peter
    Zenz, Peter
    Steiner, Guenter
    Ekmekcioglu, Cem
    ACTA HISTOCHEMICA, 2014, 116 (07) : 1199 - 1207