Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation

被引:12
作者
Mehta, Bella [1 ,2 ]
Goodman, Susan [1 ,2 ]
DiCarlo, Edward [1 ,2 ]
Jannat-Khah, Deanna [1 ,2 ]
Gibbons, J. Alex B. [3 ]
Otero, Miguel [1 ,2 ]
Donlin, Laura [1 ,2 ]
Pannellini, Tania [2 ]
Robinson, William H. H. [4 ]
Sculco, Peter [1 ,2 ]
Figgie, Mark [1 ,2 ]
Rodriguez, Jose [1 ,2 ]
Kirschmann, Jessica M. M. [4 ]
Thompson, James [5 ]
Slater, David [5 ]
Frezza, Damon [5 ]
Xu, Zhenxing [2 ]
Wang, Fei [2 ]
Orange, Dana E. E. [1 ,6 ]
机构
[1] Hosp Special Surg, 535 E 70th St, New York, NY 10009 USA
[2] Weill Cornell Med, New York, NY 10021 USA
[3] Columbia Univ Vagelos Coll Phys & Surg, New York, NY USA
[4] Stanford Univ, Stanford, CA USA
[5] MITRE Corp, Mclean, VA USA
[6] Rockefeller Univ, New York, NY USA
关键词
Osteoarthritis; Rheumatoid arthritis; Synovial inflammation; Histology; Machine learning; MAST-CELLS; KNEE OSTEOARTHRITIS; CLASSIFICATION; CRITERIA; ASSOCIATION; SELECTION; TISSUES; SCORE;
D O I
10.1186/s13075-023-03008-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundWe sought to identify features that distinguish osteoarthritis (OA) and rheumatoid arthritis (RA) hematoxylin and eosin (H&E)-stained synovial tissue samples.MethodsWe compared fourteen pathologist-scored histology features and computer vision-quantified cell density (147 OA and 60 RA patients) in H&E-stained synovial tissue samples from total knee replacement (TKR) explants. A random forest model was trained using disease state (OA vs RA) as a classifier and histology features and/or computer vision-quantified cell density as inputs.ResultsSynovium from OA patients had increased mast cells and fibrosis (p < 0.001), while synovium from RA patients exhibited increased lymphocytic inflammation, lining hyperplasia, neutrophils, detritus, plasma cells, binucleate plasma cells, sub-lining giant cells, fibrin (all p < 0.001), Russell bodies (p = 0.019), and synovial lining giant cells (p = 0.003). Fourteen pathologist-scored features allowed for discrimination between OA and RA, producing a micro-averaged area under the receiver operating curve (micro-AUC) of 0.85 +/- 0.06. This discriminatory ability was comparable to that of computer vision cell density alone (micro-AUC = 0.87 +/- 0.04). Combining the pathologist scores with the cell density metric improved the discriminatory power of the model (micro-AUC = 0.92 +/- 0.06). The optimal cell density threshold to distinguish OA from RA synovium was 3400 cells/mm(2), which yielded a sensitivity of 0.82 and specificity of 0.82.ConclusionsH&E-stained images of TKR explant synovium can be correctly classified as OA or RA in 82% of samples. Cell density greater than 3400 cells/mm(2) and the presence of mast cells and fibrosis are the most important features for making this distinction.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation
    Bella Mehta
    Susan Goodman
    Edward DiCarlo
    Deanna Jannat-Khah
    J. Alex B. Gibbons
    Miguel Otero
    Laura Donlin
    Tania Pannellini
    William H. Robinson
    Peter Sculco
    Mark Figgie
    Jose Rodriguez
    Jessica M. Kirschmann
    James Thompson
    David Slater
    Damon Frezza
    Zhenxing Xu
    Fei Wang
    Dana E. Orange
    Arthritis Research & Therapy, 25
  • [2] Advanced Machine Learning for Comparative Synovial Fluid Analysis in Osteoarthritis and Rheumatoid Arthritis
    Kopec, Karolina Krystyna
    Uccheddu, Gabrieleanselmo
    Chodnicki, Pawel
    Noto, Antonio
    Piras, Cristina
    Spada, Martina
    Atzori, Luigi
    Fanos, Vassilios
    METABOLITES, 2025, 15 (02)
  • [3] Lipid mediators of inflammation in rheumatoid arthritis and osteoarthritis
    Brouwers, Hilde
    von Hegedus, Joost
    Toes, Rene
    Kloppenburg, Margreet
    Ioan-Facsinay, Andreea
    BEST PRACTICE & RESEARCH IN CLINICAL RHEUMATOLOGY, 2015, 29 (06): : 741 - 755
  • [4] Identification of differentially expressed genes in synovial tissue of rheumatoid arthritis and osteoarthritis in patients
    Li, Wen Chao
    Bai, De Lei
    Xu, Yang
    Chen, Hui
    Ma, Rui
    Hou, Wen Bo
    Xu, Rui Jiang
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 4533 - 4544
  • [5] Identification and validation of hub genes of synovial tissue for patients with osteoarthritis and rheumatoid arthritis
    Yanzhi Ge
    Zuxiang Chen
    Yanbin Fu
    Xiujuan Xiao
    Haipeng Xu
    Letian Shan
    Peijian Tong
    Li Zhou
    Hereditas, 158
  • [6] Identification and validation of hub genes of synovial tissue for patients with osteoarthritis and rheumatoid arthritis
    Ge, Yanzhi
    Chen, Zuxiang
    Fu, Yanbin
    Xiao, Xiujuan
    Xu, Haipeng
    Shan, Letian
    Tong, Peijian
    Zhou, Li
    HEREDITAS, 2021, 158 (01)
  • [7] Distinct serum and synovial fluid interleukin (IL)-33 levels in rheumatoid arthritis, psoriatic arthritis and osteoarthritis
    Talabot-Ayer, Dominique
    McKee, Thomas
    Gindre, Patrizia
    Bas, Sylvette
    Baeten, Dominique L.
    Gabay, Cem
    Palmer, Gaby
    JOINT BONE SPINE, 2012, 79 (01) : 32 - 37
  • [8] Quinaldic acid in synovial fluid of patients with rheumatoid arthritis and osteoarthritis and its effect on synoviocytes in vitro
    Nowicka-Stazka, Patrycja
    Langner, Ewa
    Turski, Waldemar
    Rzeski, Wojciech
    Parada-Turska, Jolanta
    PHARMACOLOGICAL REPORTS, 2018, 70 (02) : 277 - 283
  • [9] Rheumatoid arthritis: regulation of synovial inflammation
    Sweeney, SE
    Firestein, GS
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2004, 36 (03) : 372 - 378
  • [10] Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine Learning Integration of Synovial Histologic Features and RNA Sequencing Data
    Orange, Dana E.
    Agius, Phaedra
    DiCarlo, Edward F.
    Robine, Nicolas
    Geiger, Heather
    Szymonifka, Jackie
    McNamara, Michael
    Cummings, Ryan
    Andersen, Kathleen M.
    Mirza, Serene
    Figgie, Mark
    Ivashkiv, Lionel B.
    Pernis, Alessandra B.
    Jiang, Caroline S.
    Frank, Mayu O.
    Darnell, Robert B.
    Lingampali, Nithya
    Robinson, William H.
    Gravallese, Ellen
    Bykerk, Vivian P.
    Goodman, Susan M.
    Donlin, Laura T.
    ARTHRITIS & RHEUMATOLOGY, 2018, 70 (05) : 690 - 701