Numerical investigation of localization in two-dimensional quasiperiodic mosaic lattice

被引:2
作者
Wang, Hui-Hui [1 ,2 ]
Wang, Si-Si [1 ,3 ]
Yu, Yan [4 ,5 ]
Zhang, Biao [1 ,2 ]
Dai, Yi-Ming [1 ]
Chen, Hao-Can [1 ]
Zhang, Yi-Cai [1 ]
Zhang, Yan-Yang [1 ,2 ,3 ]
机构
[1] Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou 510006, Peoples R China
[2] Huangpu Res & Grad Sch Guangzhou Univ, Guangzhou 510700, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Chinese Acad Sci, Inst Semicond, SKLSM, POB 912, Beijing 100083, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum localization; quasiperiodic system; two dimension; scaling function; CONDUCTANCE DISTRIBUTION; SCALING THEORY; BETA-FUNCTION; ANDERSON; DIFFUSION; ABSENCE; MODEL; BAND;
D O I
10.1088/1361-648X/acb67c
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wang et al 2020 Phys. Rev. Lett. 125 196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak at g similar to 0 g limit of the universal scaling function beta resemble those behaviors of three-dimensional disordered systems.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Two-dimensional numerical simulation of channel flow with submerged obstacles using the lattice Boltzmann method [J].
Cargnelutti, J. ;
Galina, V. ;
Kaviski, E. ;
Gramani, L. M. ;
Lobeiro, A. M. .
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2018, 34 (01)
[42]   Spectral approach to transport in a two-dimensional honeycomb lattice with substitutional disorder [J].
Kostadinova, E. G. ;
Liaw, C. D. ;
Hering, A. S. ;
Cameron, A. ;
Guyton, F. ;
Matthews, L. S. ;
Hyde, T. W. .
PHYSICAL REVIEW B, 2019, 99 (02)
[43]   Magnetic quantum oscillations of electrons on a two-dimensional lattice: Numerical simulations and the magnetic breakdown approach [J].
Gvozdikov, V. M. ;
Taut, M. .
PHYSICAL REVIEW B, 2007, 75 (15)
[44]   Anderson localization crossover in two-dimensional Si systems: The past and the present [J].
Ahn, Seongjin ;
Das Sarma, Sankar .
PHYSICAL REVIEW MATERIALS, 2022, 6 (09)
[45]   Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor [J].
Manai, Isam ;
Clement, Jean-Francois ;
Chicireanu, Radu ;
Hainaut, Clement ;
Garreau, Jean Claude ;
Szriftgiser, Pascal ;
Delande, Dominique .
PHYSICAL REVIEW LETTERS, 2015, 115 (24)
[46]   Simulation of Anderson localization in two-dimensional ultracold gases for pointlike disorder [J].
Morong, W. ;
DeMarco, B. .
PHYSICAL REVIEW A, 2015, 92 (02)
[47]   Anderson localization of multichannel excitations in disordered two-dimensional waveguide arrays [J].
Lobanov, V. E. ;
Borovkova, O. V. ;
Vysloukh, V. A. .
EPL, 2015, 109 (05)
[48]   Density wave propagation in a two-dimensional random dimer potential: From a single to a bipartite square lattice [J].
Capuzzi, P. ;
Vignolo, P. .
PHYSICAL REVIEW A, 2020, 101 (01)
[49]   Equilibration of energies in a two-dimensional harmonic graphene lattice [J].
Berinskii, I ;
Kuzkin, V. A. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2162)
[50]   Paired states of interacting electrons in a two-dimensional lattice [J].
Souza, D. ;
Claro, F. .
PHYSICAL REVIEW B, 2010, 82 (20)