Numerical investigation of localization in two-dimensional quasiperiodic mosaic lattice

被引:2
作者
Wang, Hui-Hui [1 ,2 ]
Wang, Si-Si [1 ,3 ]
Yu, Yan [4 ,5 ]
Zhang, Biao [1 ,2 ]
Dai, Yi-Ming [1 ]
Chen, Hao-Can [1 ]
Zhang, Yi-Cai [1 ]
Zhang, Yan-Yang [1 ,2 ,3 ]
机构
[1] Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou 510006, Peoples R China
[2] Huangpu Res & Grad Sch Guangzhou Univ, Guangzhou 510700, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Chinese Acad Sci, Inst Semicond, SKLSM, POB 912, Beijing 100083, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum localization; quasiperiodic system; two dimension; scaling function; CONDUCTANCE DISTRIBUTION; SCALING THEORY; BETA-FUNCTION; ANDERSON; DIFFUSION; ABSENCE; MODEL; BAND;
D O I
10.1088/1361-648X/acb67c
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wang et al 2020 Phys. Rev. Lett. 125 196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak at g similar to 0 g limit of the universal scaling function beta resemble those behaviors of three-dimensional disordered systems.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Direct observation of Anderson localization of ultracold atoms in a quasiperiodic lattice [J].
Yan, Wenbo ;
Li, Yuqing ;
Zhao, Hongxing ;
Wu, Jizhou ;
Liu, Wenliang ;
Li, Peng ;
Fu, Yongming ;
Xiao, Liantuan ;
Ma, Jie ;
Jia, Suotang .
OPTICS CONTINUUM, 2023, 2 (10) :2116-2121
[22]   Non-Hermiticity-induced reentrant localization in a quasiperiodic lattice [J].
Wu, Chaohua ;
Fan, Jingtao ;
Chen, Gang ;
Jia, Suotang .
NEW JOURNAL OF PHYSICS, 2021, 23 (12)
[23]   Two-dimensional lattice liquid models [J].
Ishimoto, Yukitaka ;
Murashima, Takahiro ;
Taniguchi, Takashi ;
Yamamoto, Ryoichi .
PHYSICAL REVIEW E, 2012, 86 (03)
[24]   Anderson localization in a two-dimensional random gap model [J].
Hill, A. ;
Ziegler, K. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 56 :172-176
[25]   Probing two-dimensional Anderson localization without statistics [J].
Leseur, O. ;
Pierrat, R. ;
Saenz, J. J. ;
Carminati, R. .
PHYSICAL REVIEW A, 2014, 90 (05)
[26]   Anderson localization at the boundary of a two-dimensional topological superconductor [J].
Antonenko, Daniil S. ;
Khalaf, Eslam ;
Ostrovsky, Pavel M. ;
Skvortsov, Mikhail A. .
PHYSICAL REVIEW B, 2023, 107 (07)
[27]   Weak localization of magnons in a disordered two-dimensional antiferromagnet [J].
Arakawa, Naoya ;
Ohe, Jun-ichiro .
PHYSICAL REVIEW B, 2018, 97 (02)
[28]   A TWO-DIMENSIONAL NUMERICAL INVESTIGATION ON FORCED CONVECTION IN CHANNELS WITH TRANSVERSAL RIBS [J].
Manca, O. ;
Nardini, S. ;
Ricci, D. .
IMECE 2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 9, PTS A-C, 2010, :1099-1107
[29]   Two-dimensional diffusive epidemic process in the presence of quasiperiodic and quenched disorder [J].
Alencar, D. S. M. ;
Alves, T. F. A. ;
Alves, G. A. ;
Lima, F. W. S. ;
Macedo-Filho, A. ;
Ferreira, R. S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (04)
[30]   Anomalous universal quantum transport in a two-dimensional asymptotic quasiperiodic system [J].
Poon, Ting-Fung Jeffrey ;
Wan, Yuhao ;
Wang, Yucheng ;
Liu, Xiong-Jun .
PHYSICAL REVIEW B, 2025, 111 (22)