Numerical investigation of localization in two-dimensional quasiperiodic mosaic lattice

被引:2
|
作者
Wang, Hui-Hui [1 ,2 ]
Wang, Si-Si [1 ,3 ]
Yu, Yan [4 ,5 ]
Zhang, Biao [1 ,2 ]
Dai, Yi-Ming [1 ]
Chen, Hao-Can [1 ]
Zhang, Yi-Cai [1 ]
Zhang, Yan-Yang [1 ,2 ,3 ]
机构
[1] Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou 510006, Peoples R China
[2] Huangpu Res & Grad Sch Guangzhou Univ, Guangzhou 510700, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Chinese Acad Sci, Inst Semicond, SKLSM, POB 912, Beijing 100083, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum localization; quasiperiodic system; two dimension; scaling function; CONDUCTANCE DISTRIBUTION; SCALING THEORY; BETA-FUNCTION; ANDERSON; DIFFUSION; ABSENCE; MODEL; BAND;
D O I
10.1088/1361-648X/acb67c
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wang et al 2020 Phys. Rev. Lett. 125 196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak at g similar to 0 g limit of the universal scaling function beta resemble those behaviors of three-dimensional disordered systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Types of dynamical behavior in a quasiperiodic mosaic lattice
    Zhang, Yu
    Liang, Chenguang
    Chen, Shu
    PHYSICAL REVIEW B, 2025, 111 (01)
  • [2] From topological phase to transverse Anderson localization in a two-dimensional quasiperiodic system
    Cheng, Shujie
    Asgari, Reza
    Xianlong, Gao
    PHYSICAL REVIEW B, 2023, 108 (02)
  • [3] One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges
    Wang, Yucheng
    Xia, Xu
    Zhang, Long
    Yao, Hepeng
    Chen, Shu
    You, Jiangong
    Zhou, Qi
    Liu, Xiong-Jun
    PHYSICAL REVIEW LETTERS, 2020, 125 (19)
  • [4] Epidemic outbreaks on two-dimensional quasiperiodic lattices
    Santos, G. B. M.
    Alves, T. F. A.
    Alves, G. A.
    Macedo-Filho, A.
    Ferreira, R. S.
    PHYSICS LETTERS A, 2020, 384 (02)
  • [5] Emergence of multiple localization transitions in a one-dimensional quasiperiodic lattice
    Padhan, Ashirbad
    Giri, Mrinal Kanti
    Mondal, Suman
    Mishra, Tapan
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [6] Two-dimensional localization in GeSn
    Gul, Y.
    Holmes, S. N.
    Cho, Chang-Woo
    Piot, B.
    Myronov, M.
    Pepper, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (48)
  • [7] Disorder-free localization transition in a two-dimensional lattice gauge theory
    Chakraborty, Nilotpal
    Heyl, Markus
    Karpov, Petr
    Moessner, Roderich
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [8] Critical analysis of the reentrant localization transition in a one-dimensional dimerized quasiperiodic lattice
    Roy, Shilpi
    Chattopadhyay, Sourav
    Mishra, Tapan
    Basu, Saurabh
    PHYSICAL REVIEW B, 2022, 105 (21)
  • [9] Electronic states of a disordered two-dimensional quasiperiodic tiling: From critical states to Anderson localization
    Jagannathan, Anuradha
    Tarzia, Marco
    PHYSICAL REVIEW B, 2023, 107 (05)
  • [10] Odd-even effect of the mosaic modulation period of quasiperiodic hopping on the Anderson localization in a one-dimensional lattice model
    Zhang, Yi-Cai
    Yuan, Rong
    Song, Shuwei
    Hu, Mingpeng
    Liu, Chaofei
    Wang, Yongjian
    PHYSICAL REVIEW B, 2025, 111 (06)