Efficient electrocatalytic CO2 reduction on Ti3C2O2 surfaces: The effect of single-atom TM anchoring on product selectivity

被引:7
|
作者
Zhou, Yuxin [1 ]
Cao, Haijie [2 ]
An, Zexiu [3 ]
Li, Mingxue [1 ]
Huo, Yanru [1 ]
Jiang, Jinchan [1 ]
Xie, Ju [4 ]
He, Maoxia [1 ]
机构
[1] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China
[2] Qingdao Univ, Inst Mat Energy & Environm, Sch Mat Sci & Engn, Qingdao 266071, Peoples R China
[3] Hebei Agr Univ, Coll Plant Protect, Baoding 071000, Peoples R China
[4] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金;
关键词
CO(2)reduction reaction; Single-atom catalysts; Transition metals; Ti3C2O2; First principles calculations; GENERALIZED GRADIENT APPROXIMATION; TRANSITION-METAL CARBIDES; TOTAL-ENERGY CALCULATIONS; MXENE; HYDROGENATION; DESCRIPTOR; CONVERSION; CATALYSTS; PROGRESS; AMMONIA;
D O I
10.1016/j.apsusc.2023.156492
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic CO2 reduction reaction (CO2RR) can transform CO2 into high-value-added chemicals, which is a key step toward alleviating greenhouse gas emissions and achieving carbon neutrality. Therefore, we constructed a transition metal single-atom catalyst anchored on Ti3C2O2 (TM-Ti3C2O2) through theoretical calculation. The results show that TMs are stable and capable of activating CO2. The embedding of TM breaks the symmetry of Ti3C2O2, causing different degrees of charge distribution of TM and distinct selectivity to CH4 products. CoTi3C2O2 is the optimum candidate for producing CH4 with limiting potential of -0.21 V. We established a linear relationship between the activity descriptor and the limiting potential of the product, which provided a method for screening efficient TMs. With applied potential, Co, Sc, and V-Ti3C2O2 exhibited great advantages in the CO2RR to CH4. This research serves as a point of reference for industrial production and helps to achieve the objective of carbon peaking more efficiently.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)
  • [32] Electrocatalytically Active Fe-(O-C2)4 Single-Atom Sites for Efficient Reduction of Nitrogen to Ammonia
    Zhang, Shengbo
    Jin, Meng
    Shi, Tongfei
    Han, Miaomiao
    Sun, Qiao
    Lin, Yue
    Ding, Zhenhua
    Zheng, Li Rong
    Wang, Guozhong
    Zhang, Yunxia
    Zhang, Haimin
    Zhao, Huijun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (32) : 13423 - 13429
  • [33] Effect of single atom loading on the CO2 reduction activity of pure and defective W2CO2 MXene
    Wang, Wenjie
    Shao, Cuiping
    Feng, Yang
    Cheng, Yuwen
    MOLECULAR CATALYSIS, 2024, 569
  • [34] Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction
    Chen, Yi-Hong
    Qi, Ming-Yu
    Li, Yue-Hua
    Tang, Zi-Rong
    Wang, Tuo
    Gong, Jinlong
    Xu, Yi-Jun
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (03):
  • [35] Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst
    Liu, Song
    Yang, Hong Bin
    Hung, Sung-Fu
    Ding, Jie
    Cai, Weizheng
    Liu, Linghui
    Gao, Jiajian
    Li, Xuning
    Ren, Xinyi
    Kuang, Zhichong
    Huang, Yanqiang
    Zhang, Tao
    Liu, Bin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (02) : 798 - 803
  • [36] Electrocatalytic CO2 conversion on boron nitride nanotubes by metal single-atom engineering
    Zhou, Yu-Xuan
    Chen, Hsin-Tsung
    CHEMICAL PHYSICS LETTERS, 2024, 852
  • [37] Single-Product Faradaic Efficiency for Electrocatalytic of CO2 to CO at Current Density Larger than 1.2 A cm-2 in Neutral Aqueous Solution by a Single-Atom Nanozyme
    Huang, Jia-Run
    Qiu, Xiao-Feng
    Zhao, Zhen-Hua
    Zhu, Hao-Lin
    Liu, Yan-Chen
    Shi, Wen
    Liao, Pei-Qin
    Chen, Xiao-Ming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (44)
  • [38] Temperature switching of product selectivity in CO2 reduction on Cu/ In2O3 catalysts
    Strysovsky, Tomas
    Kajabova, Martina
    Prucek, Robert
    Panacek, Ales
    Simkovicova, Karolina
    Vajda, Stefan
    Bastl, Zdenek
    Kvitek, Libor
    JOURNAL OF CO2 UTILIZATION, 2023, 77
  • [39] Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO
    Ma, Joonhee
    Cho, Jin Hyuk
    Lee, Kangwon
    Kim, Soo Young
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (02): : 29 - 46
  • [40] Recent Advances on Single-Atom Catalysts for CO2 Reduction
    Liu, Lizhen
    Li, Mingtao
    Chen, Fang
    Huang, Hongwei
    SMALL STRUCTURES, 2023, 4 (03):