Approximation of 3D trapezoidal fuzzy data using radial basis functions

被引:2
作者
Gonzalez-Rodelas, P. [1 ]
Idais, H. [2 ]
Pasadas, M. [1 ]
Yasin, M. [3 ]
机构
[1] Univ Granada, Dept Appl Math, Granada, Spain
[2] Arab & Amer Univ, Dept Math & Stat, Jenin, Palestine
[3] An Najah Natl Univ, Dept Math, Nablus, Palestine
关键词
Fuzzy data; Fuzzy functions; Approximation methods; Radial basis functions; Error and similarity measures; INTERPOLATION;
D O I
10.1016/j.fss.2022.05.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a new methodology to approximate a trapezoidal fuzzy numbers set by using smoothing radial basis functions (RBFs). The methodology uses different error and similarity indices to determine and compare the accuracy of the approximation of the given trapezoidal fuzzy data. For the proposed approximation method a fuzzy radial basis functions type are defined, called fuzzy smoothing radial basis functions under tension. The computation of one of these approximation functions from a given trapezoidal fuzzy data set is described and some convergence results are proved. Finally, some examples in two-dimensions are given to compare the behavior of the presented method by using the proposed error and similarity indices for different configurations of the fuzzy smoothing radial basis functions under tension.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:82 / 94
页数:13
相关论文
共 25 条
[1]   Interpolation of fuzzy data by using fuzzy splines [J].
Abbasbandy, S. ;
Ezzati, R. ;
Behforooz, H. .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2008, 16 (01) :107-115
[2]   Numerical approximation of fuzzy functions by fuzzy polynomials [J].
Abbasbandy, S ;
Amirfakhrian, M .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) :1001-1006
[3]  
Abbasbandy S., 1998, J APPL MATH COMPUT, V5, P457
[4]  
Abbasbandy S., 2001, J APPL MATH COMPUT, V8, P587
[5]   Numerical methods for approximation of fuzzy data [J].
Allahviranloo, T ;
Hajari, T .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) :16-33
[6]  
Arcangeli R., 2004, MULTIDIMENSIONAL MIN, DOI [10.1007/b130045, DOI 10.1007/B130045]
[7]   Radial basis functions under tension [J].
Bouhamidi, A ;
Le Méhauté, A .
JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) :135-154
[8]  
Buhmann MD, 2001, ACT NUMERIC, V9, P1, DOI 10.1017/S0962492900000015
[9]   Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers [J].
Chen, SJ ;
Chen, SM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (01) :45-56
[10]  
Ezzati R, 2013, INT J FUZZY SYST, V15, P127