Event-Triggered Adaptive Model Predictive Control of Oxygen Content for Municipal Solid Waste Incineration Process

被引:17
作者
Qiao, Junfei [1 ,2 ,3 ]
Sun, Jian [1 ,2 ,3 ]
Meng, Xi [1 ,2 ,3 ]
机构
[1] Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
[2] Minist Educ, Engn Res Ctr Intelligence Percept & Autonomous Con, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Event-triggered; model predictive control; long short-term memory (LSTM) neural network; gradient descent; municipal solid waste incineration (MSWI); NEURAL-NETWORKS; OPTIMIZATION; SYSTEMS; IMPLEMENTATION; DESIGN; PLANT;
D O I
10.1109/TASE.2022.3227918
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Oxygen content in flue gas is a key variable in the operation of the municipal solid waste incineration (MSWI) process. However, the control performance of oxygen content could not be guaranteed due to the inherent nonlinearity and uncertainty of the MSWI process. Furthermore, frequent operations of actuators in the conventional time-triggered system may also increase the computational burden and energy consumption. In this study, an event-triggered adaptive model predictive control (ET-AMPC) scheme is developed to solve the above problems. First, an improved long short-term memory (ILSTM) neural network is designed to construct the prediction model, in which the parameters are determined by the particle swarm optimization (PSO) algorithm. Besides, during the control process, the model parameters can be adjusted adaptively by an online updating strategy to tackle the uncertainty. Second, an event-triggered strategy is proposed to reduce the computational burden and energy consumption, wherein the control laws are updated only when certain triggering conditions are satisfied. Third, the gradient descent method is applied to obtain the optimized control law. Moreover, the convergence of the prediction model and the stability of the whole ET-AMPC are analyzed. Finally, the proposed ET-AMPC scheme is evaluated by real industrial data. The experimental results demonstrate that the ET-AMPC scheme can achieve satisfactory tracking control performance with fewer triggering events. Note to Practitioners-The proposed ET-AMPC is an intelligent control scheme of oxygen content for the MSWI process. The proposed control scheme has adequate tracking performance with varied set-points and less computational burden. In practice, practitioners should obtain accurate historical input and output data, and preset event-triggered thresholds. The hyperparameters of the LSTM neural network are automatically determined by the PSO algorithm, and the uncertainty can be captured with the online updating strategy. The accurate prediction model is beneficial for improving the control quality. Moreover, the optimized control law is obtained with the intuitive gradient descent method. In addition, the event-triggered strategy can further reduce unnecessary control optimization operations with better practicality and ease of usage. The superiority and practicability of the proposed method are verified against actual industrial data.
引用
收藏
页码:463 / 474
页数:12
相关论文
共 50 条
  • [21] Event-triggered intermittent sampling for nonlinear model predictive control
    Hashimoto, Kazumune
    Adachi, Shuichi
    Dimarogonas, Dimos V.
    AUTOMATICA, 2017, 81 : 148 - 155
  • [22] Event-triggered model predictive schemes for freeway traffic control
    Ferrara, Antonella
    Sacone, Simona
    Siri, Silvia
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2015, 58 : 554 - 567
  • [23] On Event-triggered Adaptive Robust Control
    Huang, Yuan
    Wang, Junzheng
    Shi, Dawei
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7831 - 7836
  • [24] A machine-learning-based event-triggered model predictive control for building energy management
    Yang, Shiyu
    Chen, Wanyu
    Wan, Man Pun
    BUILDING AND ENVIRONMENT, 2023, 233
  • [25] Robust event-triggered model predictive control for constrained linear continuous system
    Luo, Yu
    Xia, Yuanqing
    Sun, Zhongqi
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (05) : 1216 - 1229
  • [26] Event-Triggered Adaptive Control for Tank Gun Control Systems
    Cai, Jianping
    Yu, Rui
    Yan, Qiuzhen
    Mei, Congli
    Wang, Binrui
    Shen, Lujuan
    IEEE ACCESS, 2019, 7 : 17517 - 17523
  • [27] Event-Triggered Model Predictive Adaptive Dynamic Programming for Road Intersection Path Planning of Unmanned Ground Vehicle
    Hu, Chaofang
    Zhao, Lingxue
    Qu, Ge
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (11) : 11228 - 11243
  • [28] Event-Triggered Model-Free Adaptive Predictive Control for Networked Control Systems Under Deception Attacks
    Li, Fanghui
    Hou, Zhongsheng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (02): : 1325 - 1334
  • [29] Predictive triggered control for networked control systems with event-triggered mechanism
    Fu, Wei
    Yang, Simon X.
    Huang, Chuanteng
    Liu, Guoquan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S10185 - S10195
  • [30] Tracking of Uncertain Robotic Manipulators Using Event-Triggered Model Predictive Control With Learning Terminal Cost
    Kang, Erlong
    Qiao, Hong
    Chen, Ziyu
    Gao, Jie
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 2801 - 2815