Efficient and tunable microwave absorbers of the flower-like 1T/2H-MoS2 with hollow nanostructures

被引:17
作者
Wu, Mei [1 ]
Wang, Hongchang [1 ]
Liang, Xiaohui [1 ,2 ]
Wang, Dunhui [1 ,2 ]
机构
[1] Hangzhou Dianzi Univ, Hangzhou 310018, Peoples R China
[2] Nanjing Univ, Jiangsu Provincial Key Lab Nano Technol, Natl Lab Solid State Microstructures, Nanjing 210093, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Hollow nanostructures; 1T; 2H-MoS2; Interfacial polarization; Microwave absorption; ABSORPTION ENHANCEMENT; FACILE SYNTHESIS; MOS2; NANOSHEETS; COMPOSITES; MICROSPHERES; NANOPARTICLES; GROWTH; PHASE;
D O I
10.1016/j.jallcom.2022.167763
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The highly efficient three-dimensional (3D) flower-like 1 T/2 H-MoS2 with hollow nanostructures are de-veloped elaborately construct via a simple hydrothermal process. The morphology and dielectric properties of the 1 T/2 H-MoS2 can be achieved to control changes by adjusting the solvent contents of deionized water and absolute ethanol, which can significantly improve the conductivity and impedance matching char-acteristics. The composites display outstanding microwave absorption properties with a minimum reflec-tion loss (RLmin) value of - 56.32 dB at 17.16 GHz with the matching thickness of 1.85 mm. The effective absorption bandwidth is 5.88 GHz with frequency range 11.96-17.84 GHz (covering 98% of Ku-band) when the thickness is 2.13 mm. Therefore, the experimental results show that the reasonable combination of multiphase MoS2 and hollow structures is beneficial to design of microwave absorbing materials.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 52 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework [J].
Bi, Yuxin ;
Ma, Mingliang ;
Liu, Yanyan ;
Tong, Zhouyu ;
Wang, Rongzhen ;
Chung, Kwok L. ;
Ma, Aijie ;
Wu, Guanglei ;
Ma, Yong ;
He, Changpeng ;
Liu, Pan ;
Hu, Luying .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 600 :209-218
[3]   Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J].
Che, RC ;
Peng, LM ;
Duan, XF ;
Chen, Q ;
Liang, XL .
ADVANCED MATERIALS, 2004, 16 (05) :401-+
[4]   1D magnetic nitrogen doped carbon-based fibers derived from NiFe Prussian blue analogues embedded polyacrylonitrile via electrospinning with tunable microwave absorption [J].
Chen, Fu ;
Zhang, Shanshan ;
Guo, Rundong ;
Ma, Beibei ;
Xiong, Yao ;
Luo, Hui ;
Cheng, Yongzhi ;
Wang, Xian ;
Gong, Rongzhou .
COMPOSITES PART B-ENGINEERING, 2021, 224
[5]   Controllable fabrication of lightweight carbon with hierarchically hollow structure for enhanced microwave absorption [J].
Chen, Li ;
Wang, Fan ;
Bai, Changning ;
Qian, Qingyi ;
Zhao, Zhao ;
Zhang, Xiaofang ;
An, Lulu ;
Huang, Yin ;
Yu, Yuanlie .
DIAMOND AND RELATED MATERIALS, 2021, 113
[6]   Banana Leaflike C-Doped MoS2 Aerogels toward Excellent Microwave Absorption Performance [J].
Cheng, Jin-Bo ;
Zhao, Hai-Bo ;
Cao, Min ;
Li, Meng-En ;
Zhang, Ai-Ning ;
Li, Shu-Liang ;
Wang, Yu-Zhong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) :26301-26312
[7]   Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber [J].
Dai, Jingjing ;
Yang, Haibo ;
Wen, Bo ;
Zhou, Hongwei ;
Wang, Lei ;
Lin, Ying .
APPLIED SURFACE SCIENCE, 2019, 479 :1226-1235
[8]   One step towards the 1T/2H-MoS2 mixed phase: a journey from synthesis to application [J].
Das, Sarmistha ;
Swain, Gayatri ;
Parida, Kulamani .
MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (05) :2143-2172
[9]   One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption [J].
Feng, Zhou ;
Yang, Peipei ;
Wen, Guosheng ;
Li, Haibo ;
Liu, Ying ;
Zhao, Xiuchen .
APPLIED SURFACE SCIENCE, 2020, 502
[10]   Advances in core-shell engineering of carbon-based composites for electromagnetic wave absorption [J].
Gai, Lixue ;
Zhao, Honghong ;
Wang, Fengyuan ;
Wang, Pan ;
Liu, Yonglei ;
Han, Xijiang ;
Du, Yunchen .
NANO RESEARCH, 2022, 15 (10) :9410-9439