On perfect powers that are difference of two Perrin numbers or two Padovan numbers

被引:0
|
作者
Duman, Merve Gueney [1 ]
机构
[1] Sakarya Univ Appl Sci, Fac Technol Fundamental Sci Engn, Sakarya, Turkiye
来源
关键词
Diophantine equations; Continued fraction; Linear forms in logarithms; Padovan number; Perrin number; FIBONACCI NUMBERS; F-N; LUCAS; SUMS; FORM;
D O I
10.1007/s43538-023-00225-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let (Pk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{k})_{k\ge 0}$$\end{document} be the sequence of Padovan numbers and (Rk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{k})_{k\ge 0}$$\end{document} be the sequence of Perrin numbers. In this paper, we solve the equations Rn-Rm=xa,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}-R_{m}=x<^>{a},$$\end{document}Pn-Pm=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}-P_{m}=x<^>{a}$$\end{document}, and Rn=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}=x<^>{a}$$\end{document} where n, m, a, x are nonnegative integers, 1 <= a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le a$$\end{document} and 2 <= x <= 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le x\le 10$$\end{document}.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [31] Multiplicative dependence between Padovan and Perrin numbers
    Behera, Mitashree
    Ray, Prasanta Kumar
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (02):
  • [32] On b-concatenations of Padovan and Perrin numbers
    Adedji, Kouessi Norbert
    Kandhil, Neelam
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [33] Repdigits as products of consecutive Padovan or Perrin numbers
    Salah Eddine Rihane
    Alain Togbé
    Arabian Journal of Mathematics, 2021, 10 : 469 - 480
  • [34] Matrix Sequences in terms of Padovan and Perrin Numbers
    Yilmaz, Nazmiye
    Taskara, Necati
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [35] Padovan and Perrin numbers of the form xa ± xb
    Rihane, Salah Eddine
    Kafle, Bir
    Togbe, Alain
    ANNALES MATHEMATICAE ET INFORMATICAE, 2022, 55 : 158 - 171
  • [36] Repdigits as Sums of Two Padovan Numbers
    Garcia Lomeli, Ana Cecilia
    Hernandez Hernandez, Santos
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (02)
  • [37] Common terms of k-Pell numbers and Padovan or Perrin numbers
    Normenyo, Benedict Vasco
    Rihane, Salah Eddine
    Togbe, Alain
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 219 - 232
  • [38] PADOVAN NUMBERS AS SUM OF TWO REPDIGITS
    Duman, Merve Guney
    Keskin, Refik
    Hocaoglu, Leman
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2023, 76 (09): : 1326 - 1334
  • [39] Gaussian Padovan and Gaussian Perrin numbers and properties of them
    Kartal, Meral Yasar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (06)
  • [40] Perrin numbers that are concatenations of two repdigits
    Herbert Batte
    Taboka P. Chalebgwa
    Mahadi Ddamulira
    Arabian Journal of Mathematics, 2022, 11 : 469 - 478