On perfect powers that are difference of two Perrin numbers or two Padovan numbers

被引:0
|
作者
Duman, Merve Gueney [1 ]
机构
[1] Sakarya Univ Appl Sci, Fac Technol Fundamental Sci Engn, Sakarya, Turkiye
来源
关键词
Diophantine equations; Continued fraction; Linear forms in logarithms; Padovan number; Perrin number; FIBONACCI NUMBERS; F-N; LUCAS; SUMS; FORM;
D O I
10.1007/s43538-023-00225-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let (Pk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{k})_{k\ge 0}$$\end{document} be the sequence of Padovan numbers and (Rk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{k})_{k\ge 0}$$\end{document} be the sequence of Perrin numbers. In this paper, we solve the equations Rn-Rm=xa,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}-R_{m}=x<^>{a},$$\end{document}Pn-Pm=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}-P_{m}=x<^>{a}$$\end{document}, and Rn=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}=x<^>{a}$$\end{document} where n, m, a, x are nonnegative integers, 1 <= a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le a$$\end{document} and 2 <= x <= 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le x\le 10$$\end{document}.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [21] On perfect powers that are sum of two balancing numbers
    Pritam Kumar Bhoi
    Sudhansu Sekhar Rout
    Gopal Krishna Panda
    Periodica Mathematica Hungarica, 2024, 88 : 93 - 101
  • [22] On perfect powers that are sum of two balancing numbers
    Bhoi, Pritam Kumar
    Rout, Sudhansu Sekhar
    Panda, Gopal Krishna
    PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 93 - 101
  • [23] On perfect powers that are sums of two Fibonacci numbers
    Luca, Florian
    Patel, Vandita
    JOURNAL OF NUMBER THEORY, 2018, 189 : 90 - 96
  • [24] On perfect powers that are sums of two Pell numbers
    Aboudja, Hyacinthe
    Hernane, Mohand
    Rihane, Salah Eddine
    Togbe, Main
    PERIODICA MATHEMATICA HUNGARICA, 2021, 82 (01) : 11 - 15
  • [25] On perfect powers that are sums of two Pell numbers
    Hyacinthe Aboudja
    Mohand Hernane
    Salah Eddine Rihane
    Alain Togbé
    Periodica Mathematica Hungarica, 2021, 82 : 11 - 15
  • [26] Repdigits as products of consecutive Padovan or Perrin numbers
    Rihane, Salah Eddine
    Togbe, Alain
    ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (02) : 469 - 480
  • [27] k-Fibonacci numbers which are Padovan or Perrin numbers
    Rihane, Salah Eddine
    Togbe, Alain
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02): : 568 - 582
  • [28] Common terms of k-Pell numbers and Padovan or Perrin numbers
    Benedict Vasco Normenyo
    Salah Eddine Rihane
    Alain Togbé
    Arabian Journal of Mathematics, 2023, 12 : 219 - 232
  • [29] Multiplicative dependence between Padovan and Perrin numbers
    Mitashree Behera
    Prasanta Kumar Ray
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [30] Sum and Difference of Powers of Two Fibonacci Numbers
    Taclay, Richard J.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1155 - 1158