On perfect powers that are difference of two Perrin numbers or two Padovan numbers

被引:0
|
作者
Duman, Merve Gueney [1 ]
机构
[1] Sakarya Univ Appl Sci, Fac Technol Fundamental Sci Engn, Sakarya, Turkiye
来源
关键词
Diophantine equations; Continued fraction; Linear forms in logarithms; Padovan number; Perrin number; FIBONACCI NUMBERS; F-N; LUCAS; SUMS; FORM;
D O I
10.1007/s43538-023-00225-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let (Pk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{k})_{k\ge 0}$$\end{document} be the sequence of Padovan numbers and (Rk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{k})_{k\ge 0}$$\end{document} be the sequence of Perrin numbers. In this paper, we solve the equations Rn-Rm=xa,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}-R_{m}=x<^>{a},$$\end{document}Pn-Pm=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}-P_{m}=x<^>{a}$$\end{document}, and Rn=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}=x<^>{a}$$\end{document} where n, m, a, x are nonnegative integers, 1 <= a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le a$$\end{document} and 2 <= x <= 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le x\le 10$$\end{document}.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [1] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Merve Güney Duman
    Proceedings of the Indian National Science Academy, 2024, 90 : 124 - 131
  • [2] PERFECT POWERS AS DIFFERENCE OF PERRIN NUMBERS AND PADOVAN NUMBERS
    Duman, Merve guney
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (04): : 552 - 566
  • [3] On Concatenations of Two Padovan and Perrin Numbers
    Erduvan, Fatih
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [4] On Concatenations of Two Padovan and Perrin Numbers
    Fatih Erduvan
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [5] PADOVAN AND PERRIN NUMBERS AS PRODUCTS OF TWO GENERALIZED LUCAS NUMBERS
    Adedji, Norbert Kouessi
    Odjoumani, Japhet
    Togbe, Alain
    ARCHIVUM MATHEMATICUM, 2023, 59 (04): : 315 - 337
  • [6] Padovan and Perrin numbers as product of two repdigits
    Salah Eddine Rihane
    Alain Togbé
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [7] Padovan and Perrin numbers as product of two repdigits
    Rihane, Salah Eddine
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [8] Padovan numbers as difference of two repdigits
    Duman, Merve Guney
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [9] Padovan or Perrin numbers that are concatenations of two distinct base b repdigits
    Adedji, Kouessi N.
    Dossou-yovo, Virgile
    Rihane, Salah E. E.
    Togbe, Alain
    MATHEMATICA SLOVACA, 2023, 73 (01) : 49 - 64
  • [10] ON PERFECT POWERS WHICH ARE SUM OR DIFFERENCE OF TWO LUCAS NUMBERS
    Siar, Z.
    Keskin, R.
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 951 - 960