Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space

被引:0
作者
Dong, Xiaolei [1 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466001, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
MHD boundary layer equations; the existence of solutions; the energy method; the weighted sobolev space; WELL-POSEDNESS; ILL-POSEDNESS; STABILITY; SYSTEM; FLOW;
D O I
10.3934/math.2024256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigated the local existence of the solutions to the 2D magnetohydrodynamic (MHD) boundary layer equations on the half plane by energy methods in weighted Sobolev space. Compared to the existence of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays an important role, we used the initial tangential magnetic field with a lower bound delta> 0 instead of the monotonicity condition of the tangential velocity.
引用
收藏
页码:5294 / 5329
页数:36
相关论文
共 50 条
[21]   WELL-POSEDNESS IN SOBOLEV SPACES OF THE TWO-DIMENSIONAL MHD BOUNDARY LAYER EQUATIONS WITHOUT VISCOSITY [J].
Li, Wei-Xi ;
Xu, Rui .
ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06) :4243-4255
[22]   On the Sobolev stability threshold for shear flows near Couette in 2D MHD equations [J].
Chen, Ting ;
Zi, Ruizhao .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
[23]   Global smooth solutions of the 2D MHD equations for a class of large data without magnetic diffusion [J].
Guo, Congchong ;
Lu, Ming ;
Guo, Xiangxiang .
APPLIED MATHEMATICS LETTERS, 2018, 78 :59-64
[24]   Well-Posedness in Gevrey Function Space for the 3D Axially Symmetric MHD Boundary Layer Equations Without Structural Assumption [J].
Lin, Xueyun ;
Zou, Lin .
RESULTS IN MATHEMATICS, 2024, 79 (02)
[25]   Asymptotic stability of the 2D MHD equations without magnetic diffusion [J].
Dong, Lihua ;
Ren, Xiaoxia .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
[26]   Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (02) :677-691
[27]   On regularity criteria of the 2D generalized MHD equations [J].
Ye, Zhuan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :989-1005
[28]   Long Time Well-Posedness of the MHD Boundary Layer Equation in Sobolev Space [J].
Chen, Dongxiang ;
Ren, Siqi ;
Wang, Yuxi ;
Zhang, Zhifei .
ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (01) :1-18
[29]   Long Time Well-Posedness of the MHD Boundary Layer Equation in Sobolev Space [J].
Dongxiang Chen ;
Siqi Ren ;
Yuxi Wang ;
Zhifei Zhang .
Analysis in Theory and Applications, 2020, 36 (01) :1-18
[30]   Local existence with low regularity for the 2D compressible Euler equations [J].
Zhang, Huali .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2021, 18 (03) :701-728