Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space

被引:0
作者
Dong, Xiaolei [1 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466001, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
MHD boundary layer equations; the existence of solutions; the energy method; the weighted sobolev space; WELL-POSEDNESS; ILL-POSEDNESS; STABILITY; SYSTEM; FLOW;
D O I
10.3934/math.2024256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigated the local existence of the solutions to the 2D magnetohydrodynamic (MHD) boundary layer equations on the half plane by energy methods in weighted Sobolev space. Compared to the existence of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays an important role, we used the initial tangential magnetic field with a lower bound delta> 0 instead of the monotonicity condition of the tangential velocity.
引用
收藏
页码:5294 / 5329
页数:36
相关论文
共 50 条
[1]   Local existence of solutions to 2D Prandtl equations in a weighted Sobolev space [J].
Qin, Yuming ;
Dong, Xiaolei .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
[2]   Local well-posedness of solutions to 2D mixed Prandtl equations in Sobolev space without monotonicity and lower bound [J].
Qin, Yuming ;
Dong, Xiaolei .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
[3]   Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces [J].
Liu, Cheng-Jie ;
Wang, Dehua ;
Xie, Feng ;
Yang, Tong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
[4]   Magnetic effects on the solvability of 2D incompressible magneto-micropolar boundary layer equations without resistivity in Sobolev spaces [J].
Zou, Lin ;
Lin, Xueyun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 224
[5]   Global small analytic solutions of MHD boundary layer equations [J].
Liu, Ning ;
Zhang, Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 :199-257
[6]   ON THE LOCAL EXISTENCE OF ANALYTIC SOLUTIONS TO THE PRANDTL BOUNDARY LAYER EQUATIONS [J].
Kukavica, Igor ;
Vicol, Vlad .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (01) :269-292
[7]   Local well-posedness to the thermal boundary layer equations in Sobolev space [J].
Zou, Yonghui ;
Xu, Xin ;
Gao, An .
AIMS MATHEMATICS, 2023, 8 (04) :9933-9964
[8]   MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Well-Posedness Theory [J].
Liu, Cheng-Jie ;
Xie, Feng ;
Yang, Tong .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (01) :63-121
[9]   Global small solutions of MHD boundary layer equations in Gevrey function space [J].
Tan, Zhong ;
Wu, Zhonger .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 366 :444-517
[10]   Local-in-time well-posedness theory for the inhomogeneous MHD boundary layer equations without resistivity in lower regular Sobolev space [J].
Gao, Jincheng ;
Peng, Lianyun ;
Yao, Zheng-an .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 374 :446-496