Semialgebraic Calderon-Zygmund theorem on regularization of the distance function

被引:0
作者
Kocel-Cynk, Beata [1 ]
Pawlucki, Wieslaw [2 ]
Valette, Anna [3 ]
机构
[1] Politechniki Krakowskiej, Inst Matematyki, ul Warszawska 24, PL-31155 Krakow, Poland
[2] Univ Jagiellonskiego, Inst Matematyki, ul Prof St Lojasiewicza 6, PL-30048 Krakow, Poland
[3] Univ Jagiellonskiego, Katedra Teorii Optymalizacji & Sterowan, ul Prof St Lojasiewicza 6, PL-30048 Krakow, Poland
关键词
EXTENSION THEOREM; VERSION;
D O I
10.1007/s00208-023-02795-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, for any closed semialgebraic subset W of R-n and for any positive integer p, there exists a Nash function f : R-n -> (0,infinity) which is equivalent to the distance function from W and at the same time it is Lambda(p) -regular in the sense that |D-alpha f(x)| <= Cd(x,W)(1-|alpha|), for each x is an element of R-n\W and each alpha is an element of N-n such that 1 <= |alpha| <= p, where C is a positive constant. In particular, f is Lipschitz. Some applications of this result are given.
引用
收藏
页码:1863 / 1883
页数:21
相关论文
empty
未找到相关数据