NG-DTA: Drug-target affinity prediction with n-gram molecular graphs

被引:2
|
作者
Tsui, Lok-In [1 ]
Hsu, Te-Cheng [2 ]
Lin, Che [1 ,3 ,4 ,5 ,6 ]
机构
[1] Natl Taiwan Univ NTU, Grad Inst Commun Engn, Taipei 10617, Taiwan
[2] Natl Tsing Hua Univ, Inst Commun Engn, Hsinchu 30013, Taiwan
[3] NTU, Dept Elect Engn, Taipei 10617, Taiwan
[4] NTU, Ctr Computat & Syst Biol, Taipei 10617, Taiwan
[5] NTU, Ctr Biotechnol, Taipei 10617, Taiwan
[6] NTU, Smart Med & Hlth Informat Program, Taipei 10617, Taiwan
关键词
D O I
10.1109/EMBC40787.2023.10339968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug-target affinity (DTA) prediction is crucial to speed up drug development. The advance in deep learning allows accurate DTA prediction. However, most deep learning methods treat protein as a 1D string which is not informative to models compared to a graph representation. In this paper, we present a deep-learning-based DTA prediction method called N-gram Graph DTA (NG-DTA) that takes molecular graphs of drugs and n-gram molecular sub-graphs of proteins as inputs which are then processed by graph neural networks (GNNs). Without using any prediction tool for protein structure, NG-DTA performs better than other methods on two datasets in terms of concordance index (CI) and mean square error (MSE) (CI: 0.905, MSE: 0.196 for the Davis dataset; CI: 0.904, MSE: 0.120 for Kiba dataset). Our results showed that using ngram molecular sub-graphs of proteins as input improves deep learning models' performance in DTA prediction.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Modality-DTA: Multimodality Fusion Strategy for Drug-Target Affinity Prediction
    Yang, Xixi
    Niu, Zhangming
    Liu, Yuansheng
    Song, Bosheng
    Lu, Weiqiang
    Zeng, Li
    Zeng, Xiangxiang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1200 - 1210
  • [2] GraphCL-DTA: A Graph Contrastive Learning With Molecular Semantics for Drug-Target Binding Affinity Prediction
    Yang, Xinxing
    Yang, Genke
    Chu, Jian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (08) : 4544 - 4552
  • [3] MDNN-DTA: a multimodal deep neural network for drug-target affinity prediction
    Gao, Xu
    Yan, Mengfan
    Zhang, Chengwei
    Wu, Gang
    Shang, Jiandong
    Zhang, Congxiang
    Yang, Kecheng
    FRONTIERS IN GENETICS, 2025, 16
  • [4] SAM-DTA: a sequence -agnostic model for drug-target binding affinity prediction
    Hu, Zhiqiang
    Liu, Wenfeng
    Zhang, Chenbin
    Huang, Jiawen
    Zhang, Shaoting
    Yu, Huiqun
    Xiong, Yi
    Liu, Hao
    Ke, Song
    Hong, Liang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [5] MFF-DTA: Multi-scale feature fusion for drug-target affinity prediction
    Tang, Xiwei
    Ma, Wanjun
    Yang, Mengyun
    Li, Wenjun
    METHODS, 2024, 231 : 1 - 7
  • [6] MMPD-DTA: Integrating Multi-Modal Deep Learning with Pocket-Drug Graphs for Drug-Target Binding Affinity Prediction
    Wang, Guishen
    Zhang, Hangchen
    Shao, Mengting
    Sun, Shisen
    Cao, Chen
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (03) : 1615 - 1630
  • [7] HiSIF-DTA: A Hierarchical Semantic Information Fusion Framework for Drug-Target Affinity Prediction
    Bi, Xiangpeng
    Zhang, Shugang
    Ma, Wenjian
    Jiang, Huasen
    Wei, Zhiqiang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 1579 - 1590
  • [8] DynHeter-DTA: Dynamic Heterogeneous Graph Representation for Drug-Target Binding Affinity Prediction
    Li, Changli
    Li, Guangyue
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [9] MultiKD-DTA: Enhancing Drug-Target Affinity Prediction Through Multiscale Feature Extraction
    Hu, Riqian
    Ge, Ruiquan
    Deng, Guojian
    Fan, Jin
    Tang, Bowen
    Wang, Changmiao
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2025,
  • [10] TransVAE-DTA: Transformer and variational autoencoder network for drug-target binding affinity prediction
    Zhou, Changjian
    Li, Zhongzheng
    Song, Jia
    Xiang, Wensheng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 244