Multi-Behavior Job Recommendation with Dynamic Availability

被引:0
|
作者
Saito, Yosuke [1 ]
Sugiyani, Kazunari [2 ]
机构
[1] Kyoto Univ, Kyoto, Japan
[2] Osake Seikei Univ, Osaka, Japan
来源
ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL IN THE ASIA PACIFIC REGION, SIGIR-AP 2023 | 2023年
关键词
Job Recommendation; Multi-Behavior Recommendation; Dynamic Availability; PREDICTION;
D O I
10.1145/3624918.3625314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, we can see a lot of job postings on the Internet, providing us with more diverse job opportunities. As a result, it is getting more and more difficult for job seekers to find job postings relevant to their preferences. Consequently, job recommendations play an important role to reduce the burden of job searching. Generally, job postings have a publication period, for example, 30 days. Then they have been expired since the positions were occupied. As a result, job seekers may be frustrated when they experience such situations as they cannot apply for the positions. This indicates that job seekers may have strong preferences for job postings even if their application behaviors cannot be observed. This kind of gap has not been investigated in the line of Multi-Behavior Recommendation. Therefore, in this work, we propose a new job recommendation model, called Multi-Behavior Job Recommendation with Dynamic Availability (MBJ-DA), which takes into account: (1) auxiliary behaviors other than an application behavior and (2) the influence of dynamic availability of job postings. MBJ-DA enables a more accurate estimation of each user's actual preferences by explicitly distinguishing the noise potentially inherent in auxiliary behaviors. Furthermore, by explicitly considering the influence of the dynamic availability of job postings, MBJ-DA can mitigate biases resulting from the influence and estimate each user's actual preferences more accurately. Experimental results on our dataset constructed from an actual job search website show that MBJ-DA outperforms several state-of-the-arts in terms of MRR and nDCG.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 50 条
  • [21] MORO: A Multi-behavior Graph Contrast Network for Recommendation
    Jiang, Weipeng
    Duan, Lei
    Ding, Xuefeng
    Chen, Xiaocong
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 117 - 131
  • [22] DMR: disentangled and denoised learning for multi-behavior recommendation
    Zhang, Yijia
    Chen, Wanyu
    Cai, Fei
    Shi, Zhenkun
    Qi, Feng
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [23] Multi-behavior collaborative contrastive learning for sequential recommendation
    Chen, Yuzhe
    Cao, Qiong
    Huang, Xianying
    Zou, Shihao
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (04) : 5033 - 5048
  • [24] Dual graph attention networks for multi-behavior recommendation
    Yunhe Wei
    Huifang Ma
    Yike Wang
    Zhixin Li
    Liang Chang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 2831 - 2846
  • [25] An Improvement of Graph Neural Network for Multi-behavior Recommendation
    Nguyen Bao Phuoc
    Duong Thuy Trang
    Phan Duy Hung
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 377 - 387
  • [26] Cascading graph contrastive learning for multi-behavior recommendation
    Yang, Jiangquan
    Li, Xiangxia
    Li, Bin
    Tian, Lianfang
    Xu, Bo
    Chen, Yanhong
    NEUROCOMPUTING, 2024, 610
  • [27] Co-contrastive Learning for Multi-behavior Recommendation
    Li, Qingfeng
    Ma, Huifang
    Zhang, Ruoyi
    Jin, Wangyu
    Li, Zhixin
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 32 - 45
  • [28] Neural Multi-Task Recommendation from Multi-Behavior Data
    Gao, Chen
    He, Xiangnan
    Gan, Dahua
    Chen, Xiangning
    Feng, Fuli
    Li, Yong
    Chua, Tat-Seng
    Jin, Depeng
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1554 - 1557
  • [29] Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
    Yang, Yuhao
    Huang, Chao
    Xia, Lianghao
    Liang, Yuxuan
    Yu, Yanwei
    Li, Chenliang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2263 - 2273
  • [30] Dual-Task Learning for Multi-Behavior Sequential Recommendation
    Luo, Jinwei
    He, Mingkai
    Lin, Xiaolin
    Pan, Weike
    Ming, Zhong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1379 - 1388