机构:
Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
UAM, CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
Univ Nacl La Plata, IFLP, CONICET Dpto Fis, CC 67, RA-1900 La Plata, ArgentinaUniv Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
Arganda, Ernesto
[1
,2
,3
]
Perez, Andres D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
UAM, CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
Univ Nacl La Plata, IFLP, CONICET Dpto Fis, CC 67, RA-1900 La Plata, ArgentinaUniv Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
Perez, Andres D.
[1
,2
,3
]
de los Rios, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
UAM, CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, SpainUniv Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
de los Rios, Martin
[1
,2
]
Sanda Seoane, Rosa Maria
论文数: 0引用数: 0
h-index: 0
机构:
UAM, CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, SpainUniv Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
Sanda Seoane, Rosa Maria
[2
]
机构:
[1] Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
[2] UAM, CSIC, Inst Fis Teor, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
[3] Univ Nacl La Plata, IFLP, CONICET Dpto Fis, CC 67, RA-1900 La Plata, Argentina
来源:
EUROPEAN PHYSICAL JOURNAL C
|
2023年
/
83卷
/
12期
关键词:
ENERGY;
D O I:
10.1140/epjc/s10052-023-12314-z
中图分类号:
O412 [相对论、场论];
O572.2 [粒子物理学];
学科分类号:
摘要:
Machine-learned likelihoods (MLL) combines machine-learning classification techniques with likelihoodbased inference tests to estimate the experimental sensitivity of high-dimensional data sets. We extend theMLLmethod by including kernel density estimators (KDE) to avoid binning the classifier output to extract the resulting one-dimensional signal and background probability density functions. We first test our method on toy models generated with multivariate Gaussian distributions, where the true probability distribution functions are known. Later, we apply the method to two cases of interest at the LHC: a search for exotic Higgs bosons, and a Z' boson decaying into lepton pairs. In contrast to physical-based quantities, the typical fluctuations of the ML outputs give non-smooth probability distributions for puresignal and pure-background samples. The non-smoothness is propagated into the density estimation due to the good performance and flexibility of the KDE method. We study its impact on the final significance computation, and we compare the results using the average of several independent ML output realizations, which allows us to obtain smoother distributions. We conclude that the significance estimation turns out to be not sensible to this issue.