Unsupervised deep learning model for correcting Nyquist ghosts of single-shot spatiotemporal encoding

被引:0
|
作者
Bao, Qingjia [1 ]
Liu, Xinjie [1 ,2 ]
Xu, Jingyun [3 ]
Xia, Liyang [3 ]
Otikovs, Martins [4 ]
Xie, Han [1 ]
Liu, Kewen [3 ]
Zhang, Zhi [1 ]
Zhou, Xin [1 ,2 ,5 ]
Liu, Chaoyang [1 ,2 ,5 ]
机构
[1] Innovat Acad Precis Measurement Sci & Technol, Key Lab Magnet Resonance Biol Syst, Wuhan, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Wuhan Univ Technol, Sch Informat Engn, Wuhan, Peoples R China
[4] Weizmann Inst Sci, Rehovot, Israel
[5] Opt Valley Lab, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; Nyquist ghosts; single shot scan; spatiotemporal encoding; unsupervised; DISTORTION CORRECTION; PHASE CORRECTION; MRI; RECONSTRUCTION; ARTIFACTS; DIFFUSION; EPI; ACQUISITION; PRINCIPLES; RESOLUTION;
D O I
10.1002/mrm.29925
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To design an unsupervised deep learning (DL) model for correcting Nyquist ghosts of single-shot spatiotemporal encoding (SPEN) and evaluate the model for real MRI applications. Methods: The proposed method consists of three main components: (1) an unsupervised network that combines Residual Encoder and Restricted Subspace Mapping (RERSM-net) and is trained to generate a phase-difference map based on the even and odd SPEN images; (2) a spin physical forward model to obtain the corrected image with the learned phase difference map; and (3) cycle-consistency loss that is explored for training the RERSM-net. Results: The proposed RERSM-net could effectively generate smooth phase difference maps and correct Nyquist ghosts of single-shot SPEN. Both simulation and real in vivo MRI experiments demonstrated that our method outperforms the state-of-the-art SPEN Nyquist ghost correction method. Furthermore, the ablation experiments of generating phase-difference maps show the advantages of the proposed unsupervised model. Conclusion: The proposed method can effectively correct Nyquist ghosts for the single-shot SPEN sequence.
引用
收藏
页码:1368 / 1383
页数:16
相关论文
共 50 条
  • [1] Referenceless one-dimensional Nyquist ghost correction in multicoil single-shot spatiotemporally encoded MRI
    Chen, Ying
    Liao, Yupeng
    Yuan, Lisha
    Liu, Hui
    Yun, Seong Dae
    Shah, Nadim Joni
    Chen, Zhong
    Zhong, Jianhui
    MAGNETIC RESONANCE IMAGING, 2017, 37 : 222 - 233
  • [2] Distortion correction of single-shot EPI enabled by deep-learning
    Hu, Zhangxuan
    Wang, Yishi
    Zhang, Zhe
    Zhang, Jieying
    Zhang, Huimao
    Guo, Chunjie
    Sun, Yuejiao
    Guo, Hua
    NEUROIMAGE, 2020, 221
  • [3] Correcting surface coil excitation inhomogeneities in single-shot SPEN MRI
    Schmidt, Rita
    Mishkovsky, Mor
    Hyacinthe, Jean-Noel
    Kunz, Nicolas
    Gruetter, Rolf
    Comment, Arnaud
    Frydman, Lucio
    JOURNAL OF MAGNETIC RESONANCE, 2015, 259 : 199 - 206
  • [4] In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding
    Schmidt, Rita
    Laustsen, Christoffer
    Dumez, Jean-Nicolas
    Kettunen, Mikko I.
    Serrao, Eva M.
    Marco-Rius, Irene
    Brindle, Kevin M.
    Ardenkjaer-Larsen, Jan Henrik
    Frydman, Lucio
    JOURNAL OF MAGNETIC RESONANCE, 2014, 240 : 8 - 15
  • [5] Single-Shot Sub-Nyquist RF Signal Reconstruction Based on Deep Learning Network
    Liu, Shun
    Mididoddi, Chaitanya K.
    Zhou, Huiyu
    Li, Baojun
    Xu, Weichao
    Wang, Chao
    2018 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP), 2018,
  • [6] Simultaneous superresolution reconstruction and distortion correction for single-shot EPI DWI using deep learning
    Ye, Xinyu
    Wang, Peipei
    Li, Sisi
    Zhang, Jieying
    Lian, Yuan
    Zhang, Yajing
    Lu, Jie
    Guo, Hua
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (06) : 2456 - 2470
  • [7] Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI
    Wilm, Bertram J.
    Barmet, Christoph
    Gross, Simon
    Kasper, Lars
    Vannesjo, S. Johanna
    Haeberlin, Max
    Dietrich, Benjamin E.
    Brunner, David O.
    Schmid, Thomas
    Pruessmann, Klaas P.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (01) : 83 - 91
  • [8] Unsupervised Deep Learning Enables 3D Imaging for Single-Shot Incoherent Holography
    Wang, Yuheng
    Wang, Huiyang
    Liu, Shengde
    Huang, Tao
    Zhang, Weina
    Di, Jianglei
    Rosen, Joseph
    Lu, Xiaoxu
    Zhong, Liyun
    LASER & PHOTONICS REVIEWS, 2024, 18 (06)
  • [9] Unsupervised cycle-consistent network for removing susceptibility artifacts in single-shot EPI
    Xie, Weida
    Chen, Shi
    Bao, Qingjia
    Liu, Kewen
    Li, Zhao
    Bai, Chongxin
    Martins, Otikovs
    Li, Piqiang
    Wang, Jie
    Liu, Chaoyang
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 157, 2021, 157 : 1723 - 1738
  • [10] A fast chemical exchange saturation transfer imaging scheme based on single-shot spatiotemporal encoding
    Huang, Jianpan
    Zhang, Miao
    Lu, Jianhua
    Cai, Congbo
    Chen, Lin
    Cai, Shuhui
    MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (05) : 1786 - 1796