Composite separators for internal thermal management in rechargeable lithium batteries: A review

被引:11
作者
Thakur, Amrit Kumar [1 ,9 ]
Kumar, Anuj [2 ]
Park, Hyeona [3 ]
Kim, Hyerim [3 ]
Ahmed, Mohammad Shamsuddin [4 ]
Saleque, Ahmed Mortuza [5 ]
Vikram, Muthuraman Ponrajan [6 ]
Saidur, R. [7 ]
Ma, Yanbao [1 ]
Hwang, Jang-Yeon [3 ,8 ]
机构
[1] Univ Calif Merced, Dept Mech Engn, Merced, CA 95343 USA
[2] Indian Inst Technol, Dept Mech Engn, Bombay, Maharashtra, India
[3] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[4] Univ North Dakota, Inst Energy Studies, Grand Forks, ND 58202 USA
[5] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[6] SIMATS, Saveetha Sch Engn, Dept Mech Engn, Chennai 602105, Tamil Nadu, India
[7] Sunway Univ, Res Ctr Nanomat & Energy Technol RCNMET, Sch Engn & Technol, Jalan Univ, Bandar Sunway 47500, Selangor, Malaysia
[8] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
[9] KPR Inst Engn & Technol, Dept Mech Engn, Coimbatore 641407, Tamil Nadu, India
关键词
Lithium ion batteries; Separator; Safety; Thermal management; Coating; MICROPOROUS POLYETHYLENE SEPARATOR; METAL-ORGANIC FRAMEWORKS; ATOMIC LAYER DEPOSITION; POLYMER ELECTROLYTE; ELECTROCHEMICAL PERFORMANCE; RECENT PROGRESS; ION BATTERIES; COATING LAYER; MEMBRANE; POLYIMIDE;
D O I
10.1016/j.est.2023.108873
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Separators are thin microporous membranes that allow lithium-ion (Li+) transport across interfaces and through electrolyte, have a vital role in maintaining stable performance and safety of lithium batteries. However, conventional separators for rechargeable lithium batteries suffer from temperature-induced shrinkage, poor wettability, and low tensile stability, resulting in poor battery performance, short battery life, and safety hazards. To address these issues, it is crucial to address these challenges in engineering separators to meet the requirements of next-generation energy storage systems. Herein, we first discuss fundamental properties and requirements of separators for rechargeable lithium batteries. From the scientific societies, therefore, various physical and chemical modifications have been made to conventional separators, resulting in functional composite separators. This review summarizes and discusses how composite separators manage internal thermal safety in rechargeable lithium batteries, along with other benefits, including Li+ conductivity, structural integrity, wettability, better rate capability, and suppression of crossover.
引用
收藏
页数:19
相关论文
共 98 条
  • [1] Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety
    Ahn, Jun Hwan
    You, Tae-Sun
    Lee, Sang-Min
    Esken, Daniel
    Dehe, Daniel
    Huang, Yuan-Chang
    Kim, Dong-Won
    [J]. JOURNAL OF POWER SOURCES, 2020, 472
  • [2] High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells
    Amine, K
    Liu, J
    Belharouak, I
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) : 669 - 673
  • [3] High performance ultra-high molecular weight polyethylene nanocomposite separators with excellent rate capabilities designed for next-generation lithium-ion batteries
    Babiker, D. M. D.
    Yu, R.
    Usha, Z. R.
    Chen, W.
    Chen, X.
    Li, L.
    [J]. MATERIALS TODAY PHYSICS, 2022, 23
  • [4] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [5] Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
  • [6] Flame retardant vermiculite coated on polypropylene separator for lithium-ion batteries
    Carter, Maria
    Parekh, Mihit H.
    Tomar, Vikas
    Dietz, J. Eric
    Pol, Vilas G.
    [J]. APPLIED CLAY SCIENCE, 2021, 208
  • [7] Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries
    Chen, He
    Lin, Qian
    Xu, Qiang
    Yang, Yang
    Shao, Zongping
    Wang, Yong
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2014, 458 : 217 - 224
  • [8] The research progress of polyhedral oligomeric silsesquioxane (POSS) applied to electrical energy storage elements
    Chen, Hong-Li
    Jiao, Xiao-Ning
    Zhou, Jin-Tao
    [J]. FUNCTIONAL MATERIALS LETTERS, 2017, 10 (02)
  • [9] Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: A review
    Chen, Min
    Shao, Mengmeng
    Jin, Jutao
    Cui, Lifeng
    Tu, Haoran
    Fu, Xuewei
    [J]. ENERGY STORAGE MATERIALS, 2022, 47 : 629 - 648
  • [10] High-Performance Gel Polymer Electrolyte with Self-Healing Capability for Lithium-Ion Batteries
    Chen, Xiaoyi
    Yi, Lingguang
    Zou, Changfei
    Liu, Jiali
    Yu, Jun
    Zang, Zihao
    Tao, Xiyuan
    Luo, Zhigao
    Guo, Xiaowei
    Chen, Gairong
    Chang, Baobao
    Shen, Yongqiang
    Wang, Xianyou
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 5267 - 5276