Aneurysm Pose Estimation with Deep Learning

被引:4
作者
Assis, Youssef [1 ]
Liao, Liang [1 ,2 ,3 ]
Pierre, Fabien [1 ]
Anxionnat, Rene [2 ,3 ]
Kerrien, Erwan [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
[2] Univ Lorraine, CHRU Nancy, Dept Diagnost & Therapeut Intervent Neuroradiol, F-54000 Nancy, France
[3] Univ Lorraine, INSERM, IADI, F-54000 Nancy, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II | 2023年 / 14221卷
关键词
Object Pose Estimation; 3D YOLO; Intracranial Aneurysms; INTRACRANIAL ANEURYSMS;
D O I
10.1007/978-3-031-43895-0_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The diagnosis of unruptured intracranial aneurysms from time-of-flight Magnetic Resonance Angiography (TOF-MRA) images is a challenging clinical problem that is extremely difficult to automate. We propose to go beyond the mere detection of each aneurysm and also estimate its size and the orientation of its main axis for an immediate visualization in appropriate reformatted cut planes. To address this issue, and inspired by the idea behind YOLO architecture, a novel one-stage deep learning approach is described to simultaneously estimate the localization, size and orientation of each aneurysm in 3D images. It combines fast and approximate annotation, data sampling and generation to tackle the class imbalance problem, and a cosine similarity loss to optimize the orientation. We evaluate our approach on two large datasets containing 416 patients with 317 aneurysms using a 5-fold cross-validation scheme. Our method achieves a median localization error of 0.48mm and a median 3D orientation error of 12.27 degrees C, demonstrating an accurate localization of aneurysms and an orientation estimation that comply with clinical practice. Further evaluation is performed in a more classical detection setting to compare with state-of-the-art nnDetecton and nnUNet methods. Competitive performance is reported with an average precision of 76.60%, a sensitivity score of 82.93%, and 0.44 false positives per case. Code and annotations are publicly available at https://gitlab.inria.fr/yassis/DeepAnePose.
引用
收藏
页码:543 / 553
页数:11
相关论文
共 50 条
[41]   Category-Level Metric Scale Object Shape and Pose Estimation [J].
Lee, Taeyeop ;
Lee, Byeong-Uk ;
Kim, Myungchul ;
Kweon, I. S. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) :8575-8582
[42]   A New Edge Patch with Rotation Invariance for Object Detection and Pose Estimation [J].
Tong, Xunwei ;
Li, Ruifeng ;
Ge, Lianzheng ;
Zhao, Lijun ;
Wang, Ke .
SENSORS, 2020, 20 (03)
[43]   Faster and Finer Pose Estimation for Object Pool in a Single RGB Image [J].
Aing, Lee ;
Lie, Wen-Nung ;
Chiang, Jui-Chiu .
2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
[44]   6D Object Pose Estimation Based on the Attention Mechanism [J].
Zhou, Guanyu .
INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
[45]   Focal segmentation for robust 6D object pose estimation [J].
Ye, Yuning ;
Park, Hanhoon .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) :47563-47585
[46]   Monocular pose estimation of articulated open surgery tools-in the wild [J].
Spektor, Robert ;
Friedman, Tom ;
Or, Itay ;
Bolotin, Gil ;
Laufer, Shlomi .
MEDICAL IMAGE ANALYSIS, 2025, 103
[47]   Focal segmentation for robust 6D object pose estimation [J].
Yuning Ye ;
Hanhoon Park .
Multimedia Tools and Applications, 2024, 83 :47563-47585
[48]   Rupture Risk Assessment for Cerebral Aneurysm Using Interpretable Machine Learning on Multidimensional Data [J].
Ou, Chubin ;
Liu, Jiahui ;
Qian, Yi ;
Chong, Winston ;
Zhang, Xin ;
Liu, Wenchao ;
Su, Hengxian ;
Zhang, Nan ;
Zhang, Jianbo ;
Duan, Chuan-Zhi ;
He, Xuying .
FRONTIERS IN NEUROLOGY, 2020, 11
[49]   Machine Learning Classification of Cerebral Aneurysm Rupture Status with Morphologic Variables and Hemodynamic Parameters [J].
Tanioka, Satoru ;
Ishida, Fujimaro ;
Yamamoto, Atsushi ;
Shimizu, Shigetoshi ;
Sakaida, Hiroshi ;
Toyoda, Mitsuru ;
Kashiwagi, Nobuhisa ;
Suzuki, Hidenori .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (01)
[50]   Deep Phenotyping of T-Cells Derived From the Aneurysm Wall in a Pediatric Case of Subarachnoid Hemorrhage [J].
Moschetti, Giorgia ;
Vasco, Chiara ;
Clemente, Francesca ;
Galeota, Eugenia ;
Carbonara, Marco ;
Pluderi, Mauro ;
Locatelli, Marco ;
Stocchetti, Nino ;
Abrignani, Sergio ;
Zanier, Elisa R. ;
Ortolano, Fabrizio ;
Zoerle, Tommaso ;
Geginat, Jens .
FRONTIERS IN IMMUNOLOGY, 2022, 13