A Thermoelectric Energy Generator With High-Density Stacked Thermocouples by Standard BiCMOS Process

被引:0
作者
Yang, S. M. [1 ]
Wang, H. R. [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan 70143, Taiwan
关键词
Bipolar complementary metal-oxide-semiconductor (BiCMOS) process; stacked thermocouples; thermoelectric energy generator; DOUBLE CAVITY; CMOS; PERFORMANCE; HARVESTER; DESIGN; CHIP;
D O I
10.1109/JSEN.2023.3301452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A thermoelectric energy generator (TEG) with high area density, high Seebeck coefficient, and high-temperature gradient of thermocouples is developed by standard bipolar complementary metal-oxide-semiconductor (BiCMOS) process. The TEG has the stacked thermocouple design for high area density, the polysilicon germanium (poly-SiGe) thermocouple for better thermoelectric conversion efficiency, and the double cavity design for sufficient thermal gradient. It is shown that a 5 x 5 mm(2) TEG chip with stacked thermocouples in optimal size 65 x 2 mu m at 2 mu m width spacing, or about 3512 thermocouple/mm(2), can achieve 0.131-mu W/cm(2)K(2) power factor and 37.01-V/cm(2)K voltage factor in analysis, and 0.105 mu W/cm(2)K(2) and 33.91 V/cm(2)K in measurement. The thermocouple area density can be increased further by reducing the width spacing to 1.067 mu m, or about 4802 thermocouple/mm(2), to achieve 0.103 mu W/cm(2)K(2) and 36.19 V/cm(2)K in measurement. The optimal thermocouple size is 78 x 2 mu m to achieve 0.131 mu W/cm(2)K(2) and 44.95 V/cm(2)K in analysis. The performance increase is shown to be superior to all the other semiconductor TEGs.
引用
收藏
页码:21061 / 21069
页数:9
相关论文
共 30 条
  • [2] Structural Design for Dimensional Stability of Thermocouples in Thermoelectric Energy Harvester
    Chen, M. D.
    Wang, J. Y.
    Yang, S. M.
    Tsai, M. H.
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (01) : 58 - 64
  • [3] Dai C.L., 2013, P 8 ANN IEEE INT C N, V31, P128
  • [4] Transitioning from Si to SiGe Nanowires as Thermoelectric Material in Silicon-Based Microgenerators
    Fonseca, Luis
    Donmez-Noyan, Inci
    Dolcet, Marc
    Estrada-Wiese, Denise
    Santander, Joaquin
    Salleras, Marc
    Gadea, Gerard
    Pacios, Merce
    Sojo, Jose-Manuel
    Morata, Alex
    Tarancon, Albert
    [J]. NANOMATERIALS, 2021, 11 (02) : 1 - 11
  • [5] Silicon integrated circuit thermoelectric generators with a high specific power generation capacity
    Hu, Gangyi
    Edwards, Hal
    Lee, Mark
    [J]. NATURE ELECTRONICS, 2019, 2 (07) : 300 - 306
  • [6] Researches on MEMS thermoelectric-photoelectric integrated energy harvester with metal heat sink
    Ji, Sichao
    Liao, Xiaoping
    [J]. MICROELECTRONICS JOURNAL, 2020, 96
  • [7] Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators
    Kao, Pin-Hsu
    Shih, Po-Jen
    Dai, Ching-Liang
    Liu, Mao-Chen
    [J]. SENSORS, 2010, 10 (02): : 1315 - 1325
  • [8] SiGe nanowire arrays based thermoelectric microgenerator
    Noyan, Inci Donmez
    Gadea, Gerard
    Salleras, Marc
    Pacios, Merce
    Calaza, Carlos
    Stranz, Andrej
    Dolcet, Marc
    Morata, Alex
    Tarancon, Albert
    Fonseca, Luis
    [J]. NANO ENERGY, 2019, 57 : 492 - 499
  • [9] Odia A, 2015, 2015 11TH CONFERENCE ON PH.D. RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME), P254, DOI 10.1109/PRIME.2015.7251383
  • [10] Manufacturing and Characterization of a Thermoelectric Energy Harvester Using the CMOS-MEMS Technology
    Peng, Shih-Wen
    Shih, Po-Jen
    Dai, Ching-Liang
    [J]. MICROMACHINES, 2015, 6 (10) : 1560 - 1568