Study of a sequential ?-Hilfer fractional integro-differential equations with nonlocal BCs

被引:0
作者
Haddouchi, Faouzi [1 ,2 ]
Samei, Mohammad Esmael [3 ]
Rezapour, Shahram [4 ,5 ,6 ]
机构
[1] Univ Sci & Technol Oran MB, Dept Phys, Oran, Algeria
[2] Univ Oran 1, Lab Fundamental & Appl Math Oran LMFAO, Oran, Algeria
[3] Bu Ali Sina Univ, Fac Basic Sci, Dept Math, Hamadan 6517838695, Hamadan, Iran
[4] Kyuing Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul, South Korea
[5] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[6] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan
关键词
-Hilfer fractional derivative; Nonlocal conditions; Existence and uniqueness; Kuratowski measure of noncompactness; Stability; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; UNIQUENESS; STABILITY; THEOREM;
D O I
10.1007/s11868-023-00555-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and uniqueness of solutions for a nonlinear boundary value problem involving a sequential ?-Hilfer fractional integro-differential equations with nonlocal boundary conditions. The existence and uniqueness of solutions are established for the considered problem by using the Banach contraction principle, Sadovski's fixed point theorem, and Krasnoselskii-Schaefer fixed point theorem due to Burton and Kirk. In addition, the Ulam-Hyers stability of solutions is discussed. Finally, the obtained results are illustrated by examples.
引用
收藏
页数:46
相关论文
共 50 条
  • [31] Controllability of impulsive nonlinear ψ-Hilfer fractional integro-differential equations
    Ahmed, A. M. Sayed
    AL-Nahhas, Mahmoud A.
    Omar, Othman A. M.
    Chalishajar, Dimplekumar N.
    Ahmed, Hamdy M.
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 16
  • [32] Nonlocal Hybrid Integro-Differential Equations Involving Atangana-Baleanu Fractional Operators
    Alshammari, Saleh
    Alshammari, Mohammad
    Abdo, Mohammed S.
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [33] Study of a sequential ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Hilfer fractional integro-differential equations with nonlocal BCs
    Faouzi Haddouchi
    Mohammad Esmael Samei
    Shahram Rezapour
    Journal of Pseudo-Differential Operators and Applications, 2023, 14 (4)
  • [34] Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions
    Nuchpong, Cholticha
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    OPEN MATHEMATICS, 2020, 18 : 1879 - 1894
  • [35] Existence results of ψ-Hilfer integro-differential equations with fractional order in Banach space
    Almalahi, Mohammed A.
    Panchal, Satish K.
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2020, 19 (01) : 171 - 192
  • [36] Approximate Controllability of a Coupled Nonlocal Partial Functional Integro-differential Equations with Impulsive Effects
    Litimein, Hamida
    Litimein, Sara
    Ouahab, Abdelghani
    Huang, Zhen-You
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [37] A NONLOCAL HYBRID BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Ahmad, Bashir
    Ntouyasi, Sotiris K.
    Tariboon, Jessada
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1631 - 1640
  • [38] NULL CONTROLLABILITY OF NONLOCAL HILFER FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS
    Wang, Jinrong
    Ahmed, Hamdy M.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) : 1073 - 1083
  • [39] Result on Controllability of Hilfer fractional integro-differential equations of Sobolev-type with Non-instantaneous Impulses
    Kumar, Parveen
    Vats, Ramesh Kumar
    Kumar, Ankit
    FILOMAT, 2023, 37 (29) : 10033 - 10053
  • [40] Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions
    Ahmad, Bashir
    Alsaedi, Ahmed
    BOUNDARY VALUE PROBLEMS, 2012,