Complete Positivity of Comultiplication and Primary Criteria for Unitary Categorification

被引:2
作者
Huang, Linzhe [1 ]
Liu, Zhengwei [1 ,2 ,3 ]
Palcoux, Sebastien [3 ]
Wu, Jinsong [3 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
GENERATED PLANAR ALGEBRAS; FUSION CATEGORIES; SUBFACTORS; INDEX; 3-MANIFOLDS; INVARIANTS; MAPS;
D O I
10.1093/imrn/rnad214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate quantum Fourier analysis on subfactors and unitary fusion categories. We prove the complete positivity of the comultiplication for subfactors and derive a primary $n$-criterion of unitary categorification of multifusion rings. It is stronger than the Schur product criterion when $n\geq 3$. The primary criterion could be transformed into various criteria, which are easier to check in practice even for noncommutative, high-rank, high-multiplicity, multifusion rings. More importantly, the primary criterion could be localized on a sparse set, so that it works for multifusion rings with sparse known data. We give numerous examples to illustrate the efficiency and the power of these criteria.
引用
收藏
页码:817 / 860
页数:44
相关论文
共 49 条
[1]   FUSION RULES ON A PARAMETRIZED SERIES OF GRAPHS [J].
Asaeda, Marta ;
Haagerup, Uffe .
PACIFIC JOURNAL OF MATHEMATICS, 2011, 253 (02) :257-288
[2]  
ATIYAH M, 1988, PUBL MATH-PARIS, P175
[3]   AN ANGLE BETWEEN INTERMEDIATE SUBFACTORS AND ITS RIGIDITY [J].
Bakshi, Keshab Chandra ;
Das, Sayan ;
Liu, Zhengwei ;
Ren, Yunxiang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (08) :5973-5991
[4]   Singly generated planar algebras of small dimension, Part II [J].
Bisch, D ;
Jones, V .
ADVANCES IN MATHEMATICS, 2003, 175 (02) :297-318
[5]  
Bisch D, 2000, DUKE MATH J, V101, P41
[6]   SINGLY GENERATED PLANAR ALGEBRAS OF SMALL DIMENSION, PART III [J].
Bisch, Dietmar ;
Jones, Vaughan F. R. ;
Liu, Zhengwei .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (04) :2461-2476
[7]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[8]   On orbifold theory [J].
Dong, Chongying ;
Ren, Li ;
Xu, Feng .
ADVANCES IN MATHEMATICS, 2017, 321 :1-30
[9]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642
[10]  
Etingof P., 2015, Mathematical Surveys and Monographs, V205