Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance

被引:3
作者
Ermolaev, Andrei V. [1 ]
Mabed, Mehdi [1 ]
Finot, Christophe [2 ]
Genty, Goery [3 ]
Dudley, John M. [1 ]
机构
[1] Univ Franche Comte, Inst FEMTO ST, CNRS UMR 6174, F-25000 Besancon, France
[2] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, CNRS UMR 6303, F-21078 Dijon, France
[3] Tampere Univ, Photon Lab, Tampere 33104, Finland
基金
芬兰科学院;
关键词
PEREGRINE SOLITON; BREATHERS; EQUATIONS; WATER;
D O I
10.1038/s41598-023-37039-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrodinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Rogue Waves With Rational Profiles in Unstable Condensate and Its Solitonic Model [J].
Agafontsev, D. S. ;
Gelash, A. A. .
FRONTIERS IN PHYSICS, 2021, 9
[2]  
Agrawal G.P., 2019, NONLINEAR FIBER OPTI, V6th
[3]  
Akhmediev N N., 1997, Nonlinear Pulses and Beams, Vvol 12
[4]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[5]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[6]  
[Anonymous], 1999, Nonlinear Schrodinger Equations: Self-Focusing Instability and Wave Collapse
[7]  
[Anonymous], 2022, Dynam. Syst. Control, DOI DOI 10.1017/9781009089517
[8]  
[Anonymous], 2006, Pattern Recognition and Machine Learning, DOI [10.1117/1.2819119, DOI 10.18637/JSS.V017.B05]
[9]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[10]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307