Hyperspectral Image Denoising: From Model-Driven, Data-Driven, to Model-Data-Driven

被引:47
|
作者
Zhang, Qiang [1 ]
Zheng, Yaming [1 ]
Yuan, Qiangqiang [2 ]
Song, Meiping [1 ]
Yu, Haoyang [1 ]
Xiao, Yi [2 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Ctr Hyperspectral Imaging Remote Sensing, Dalian 116026, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
关键词
Data-driven; denoising; hyperspectral image; model-data-driven; model-driven; technical review; REMOTE-SENSING IMAGE; RANK TENSOR RECOVERY; MIXED NOISE REMOVAL; DIMENSIONALITY REDUCTION; SPARSE REPRESENTATION; MATRIX FACTORIZATION; THICK CLOUD; RESTORATION; CLASSIFICATION; REGULARIZATION;
D O I
10.1109/TNNLS.2023.3278866
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications. In this technical review, we first give the noise analysis in different noisy HSIs and conclude crucial points for programming HSI denoising algorithms. Then, a general HSI restoration model is formulated for optimization. Later, we comprehensively review existing HSI denoising methods, from model-driven strategy (nonlocal mean, total variation, sparse representation, low-rank matrix approximation, and low-rank tensor factorization), data-driven strategy 2-D convolutional neural network (CNN), 3-D CNN, hybrid, and unsupervised networks, to model-data-driven strategy. The advantages and disadvantages of each strategy for HSI denoising are summarized and contrasted. Behind this, we present an evaluation of the HSI denoising methods for various noisy HSIs in simulated and real experiments. The classification results of denoised HSIs and execution efficiency are depicted through these HSI denoising methods. Finally, prospects of future HSI denoising methods are listed in this technical review to guide the ongoing road for HSI denoising. The HSI denoising dataset could be found at https://qzhang95.github.io.
引用
收藏
页码:13143 / 13163
页数:21
相关论文
共 50 条
  • [11] From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems
    Wang, Tianyu
    Noori, Mohammad
    Altabey, Wael A.
    Wu, Zhishen
    Ghiasi, Ramin
    Kuok, Sin-Chi
    Silik, Ahmed
    Farhan, Nabeel S. D.
    Sarhosis, Vasilis
    Farsangi, Ehsan Noroozinejad
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 204
  • [12] Factorization method with one plane wave: from model-driven and data-driven perspectives
    Ma, Guanqiu
    Hu, Guanghui
    INVERSE PROBLEMS, 2022, 38 (01)
  • [13] A model-driven network for guided image denoising
    Xu, Shuang
    Zhang, Jiangshe
    Wang, Jialin
    Sun, Kai
    Zhang, Chunxia
    Liu, Junmin
    Hu, Junying
    INFORMATION FUSION, 2022, 85 : 60 - 71
  • [14] Model-Driven Data Migration
    Aboulsamh, Mohammed
    Crichton, Edward
    Davies, Jim
    Welch, James
    ADVANCES IN CONCEPTUAL MODELING: APPLICATIONS AND CHALLENGES, 2010, 6413 : 285 - 294
  • [15] An Overview of Data-Driven and Model-Driven Based Prognostics Techniques for Power Modules
    Halim, M. H. Abdul
    Buniyamin, N.
    Naoe, N.
    Rosman, M. S.
    2018 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), 2018, : 34 - 39
  • [16] A study of health management of LWD tool based on data-driven and model-driven
    Hui Li
    Zi-Hua He
    Yu-ting Zhang
    Jin Feng
    Zun-Yi Jian
    Yi-Bo Jiang
    Acta Geophysica, 2022, 70 : 669 - 676
  • [17] Deep Interpretable Fully CNN Structure for Sparse Hyperspectral Unmixing via Model-Driven and Data-Driven Integration
    Kong, Fanqiang
    Chen, Mengyue
    Li, Yunsong
    Li, Dan
    Zheng, Yuhan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [18] Data-driven vs. model-driven: Fast face sketch synthesis
    Wang, Nannan
    Zhu, Mingrui
    Li, Jie
    Song, Bin
    Li, Zan
    NEUROCOMPUTING, 2017, 257 : 214 - 221
  • [19] A study of health management of LWD tool based on data-driven and model-driven
    Li, Hui
    He, Zi-Hua
    Zhang, Yu-ting
    Feng, Jin
    Jian, Zun-Yi
    Jiang, Yi-Bo
    ACTA GEOPHYSICA, 2022, 70 (02) : 669 - 676
  • [20] Combining Data-Driven and Model-Driven Methods for Robust Facial Landmark Detection
    Zhang, Hongwen
    Li, Qi
    Sun, Zhenan
    Liu, Yunfan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (10) : 2409 - 2422