Hyperspectral Image Denoising: From Model-Driven, Data-Driven, to Model-Data-Driven

被引:48
作者
Zhang, Qiang [1 ]
Zheng, Yaming [1 ]
Yuan, Qiangqiang [2 ]
Song, Meiping [1 ]
Yu, Haoyang [1 ]
Xiao, Yi [2 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Ctr Hyperspectral Imaging Remote Sensing, Dalian 116026, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Data-driven; denoising; hyperspectral image; model-data-driven; model-driven; technical review; REMOTE-SENSING IMAGE; RANK TENSOR RECOVERY; MIXED NOISE REMOVAL; DIMENSIONALITY REDUCTION; SPARSE REPRESENTATION; MATRIX FACTORIZATION; THICK CLOUD; RESTORATION; CLASSIFICATION; REGULARIZATION;
D O I
10.1109/TNNLS.2023.3278866
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications. In this technical review, we first give the noise analysis in different noisy HSIs and conclude crucial points for programming HSI denoising algorithms. Then, a general HSI restoration model is formulated for optimization. Later, we comprehensively review existing HSI denoising methods, from model-driven strategy (nonlocal mean, total variation, sparse representation, low-rank matrix approximation, and low-rank tensor factorization), data-driven strategy 2-D convolutional neural network (CNN), 3-D CNN, hybrid, and unsupervised networks, to model-data-driven strategy. The advantages and disadvantages of each strategy for HSI denoising are summarized and contrasted. Behind this, we present an evaluation of the HSI denoising methods for various noisy HSIs in simulated and real experiments. The classification results of denoised HSIs and execution efficiency are depicted through these HSI denoising methods. Finally, prospects of future HSI denoising methods are listed in this technical review to guide the ongoing road for HSI denoising. The HSI denoising dataset could be found at https://qzhang95.github.io.
引用
收藏
页码:13143 / 13163
页数:21
相关论文
共 50 条
  • [1] Hyperspectral and multispectral image fusion: When model-driven meet data-driven strategies
    Yan, Hao-Fang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    Kong, Seong G.
    EI-Bendary, Nashwa
    Reda, Mohamed
    INFORMATION FUSION, 2025, 116
  • [2] COMBINED THE DATA-DRIVEN WITH MODEL-DRIVEN STRAGEGY: A NOVEL FRAMEWORK FOR MIXED NOISE REMOVAL IN HYPERSPECTRAL IMAGE
    Zhang, Qiang
    Sun, Fujun
    Yuan, Qiangqiang
    Li, Jie
    Shen, Huanfeng
    Zhang, Liangpei
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2667 - 2670
  • [3] Model-Driven Feature Engineering for Data-Driven Battery SOH Model
    Alamin, Khaled
    Pagliari, Daniele Jahier
    Chen, Yukai
    Macii, Enrico
    Vinco, Sara
    Poncino, Massimo
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [4] Integrating model-driven and data-driven methods for fast state estimation
    Wu, Zhong
    Wang, Qi
    Hu, JianXiong
    Tang, Yi
    Zhang, YuNan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 139
  • [5] An Overview of Data-Driven and Model-Driven Based Prognostics Techniques for Power Modules
    Halim, M. H. Abdul
    Buniyamin, N.
    Naoe, N.
    Rosman, M. S.
    2018 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), 2018, : 34 - 39
  • [6] Data-driven vs. model-driven: Fast face sketch synthesis
    Wang, Nannan
    Zhu, Mingrui
    Li, Jie
    Song, Bin
    Li, Zan
    NEUROCOMPUTING, 2017, 257 : 214 - 221
  • [7] Practical Dynamic Security Region Model: A Hybrid Physical Model-Driven and Data-Driven Approach
    Ren, Junzhi
    Zeng, Yuan
    Qin, Chao
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 728 - 739
  • [8] Hybrid model-driven and data-driven approach for the health assessment of axial piston pumps
    Chao, Qun
    Xu, Zi
    Shao, Yuechen
    Tao, Jianfeng
    Liu, Chengliang
    Ding, Shuo
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2023, 6 (01) : 76 - 92
  • [9] Deep Interpretable Fully CNN Structure for Sparse Hyperspectral Unmixing via Model-Driven and Data-Driven Integration
    Kong, Fanqiang
    Chen, Mengyue
    Li, Yunsong
    Li, Dan
    Zheng, Yuhan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Integrating Model-Driven and Data-Driven Methods for Power System Frequency Stability Assessment and Control
    Wang, Qi
    Li, Feng
    Tang, Yi
    Xu, Yan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4557 - 4568