Copper-based metal-organic frameworks for electrochemical reduction of CO2

被引:11
|
作者
Kang, Xiaomin [1 ,2 ]
Fu, Guodong [1 ]
Fu, Xian-Zhu [1 ]
Luo, Jing-Li [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
[2] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
CO 2 electrochemical reduction; Cu nanoparticles; Cu-based MOFs; Electrocatalysts; Electrochemical reduction reaction; CARBON-DIOXIDE REDUCTION; SINGLE-CRYSTAL; ELECTROCATALYTIC CONVERSION; CU; ELECTROREDUCTION; NANOPARTICLES; CATALYSTS; HYDROCARBONS; SELECTIVITY; COMPOSITE;
D O I
10.1016/j.cclet.2022.107757
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO 2 reduction reaction (CO 2 ER) is an emerging process that involves utilizing CO 2 to produce valuable chemicals and fuels by consuming excess electricity from renewable sources. Recently, Cu and Cu-based nanoparticles, as earth-abundant and economical metal sources, have been attracting significant interest. The chemical and physical properties of Cu-based nanoparticles are modified by different strategies, and CO 2 can be converted into multicarbon products. Among various Cu-based nanoparticles, Cu-based metal-organic frameworks (MOFs) are gaining increasing interest in the field of catalysis because of their textural, topological, and electrocatalytic properties. In this minireview, we summarized and highlighted the main achievements in the research on Cu-based MOFs and their advantages in the CO 2 ER as electrocatalysts, supports, or precursors.(c) 2023 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Enhanced adsorption of dibenzothiophene with zinc/copper-based metal-organic frameworks
    Wang, Tingting
    Li, Xingxian
    Dai, Wei
    Fang, Yaoyao
    Huang, He
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (42) : 21044 - 21050
  • [42] Copper-based metal-organic frameworks as catalysts for the amination of aryl iodides
    Borisova, A. S.
    Kuliukhina, D. S.
    Malysheva, A. S.
    Murashkina, A. V.
    Averin, A. D.
    Vergun, V. V.
    Isaeva, V. I.
    Savelyev, E. N.
    Novakov, I. A.
    Beletskaya, I. P.
    RUSSIAN CHEMICAL BULLETIN, 2024, 73 (12) : 3567 - 3577
  • [43] Transformation of a copper-based metal-organic polyhedron into a mixed linker MOF for CO2 capture
    Abbas, Muhammad
    Maceda, Amanda M.
    Xiao, Zhifeng
    Zhou, Hong-Cai
    Balkus, Kenneth J.
    DALTON TRANSACTIONS, 2023, 52 (14) : 4415 - 4422
  • [44] Apoptosis and cuproptosis Co-activated Copper-based metal-organic frameworks for cancer therapy
    Li, Kun
    Wu, Leilei
    Wang, Han
    Fu, Zi
    Gao, Jiani
    Liu, Xiucheng
    Fan, Yongfei
    Qin, Xichun
    Ni, Dalong
    Wang, Jing
    Xie, Dong
    JOURNAL OF NANOBIOTECHNOLOGY, 2024, 22 (01)
  • [45] Metal-organic frameworks for CO2 photoreduction
    Zhang, Lei
    Zhang, Junqing
    FRONTIERS IN ENERGY, 2019, 13 (02) : 221 - 250
  • [46] Metal-organic frameworks for CO2 photoreduction
    Lei Zhang
    Junqing Zhang
    Frontiers in Energy, 2019, 13 : 221 - 250
  • [47] CO2 Adsorption in Metal-organic Frameworks
    Kim, Jun
    Kim, Hee-Young
    Ahn, Wha-Seung
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (02): : 171 - 180
  • [48] Metal-organic frameworks and their derivatives for the electrochemical CO2 reduction reaction: insights from molecular engineering
    Liu, Xiaoming
    Liu, Xuan-He
    Zhang, Xiangrui
    Wang, Huan
    Zhao, Qinglan
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (32) : 20578 - 20605
  • [49] Clarifying the local microenvironment of metal-organic frameworks and their derivatives for electrochemical CO2 reduction: advances and perspectives
    Aslam, Muhammad Kashif
    Yang, Kang
    Chen, Sheng
    Li, Qiang
    Duan, Jingjing
    EES CATALYSIS, 2023, 1 (03): : 179 - 229
  • [50] Electrochemical Detection of Hydrogen Peroxide Using Copper-Based Metal-Organic Frameworks: Nanoarchitectonics and Sensing Performance
    Alruwais, Raja Saad
    Adeosun, Waheed A.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2024, 34 (01) : 14 - 37