Copper-based metal-organic frameworks for electrochemical reduction of CO2

被引:11
|
作者
Kang, Xiaomin [1 ,2 ]
Fu, Guodong [1 ]
Fu, Xian-Zhu [1 ]
Luo, Jing-Li [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
[2] Univ South China, Sch Mech Engn, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
CO 2 electrochemical reduction; Cu nanoparticles; Cu-based MOFs; Electrocatalysts; Electrochemical reduction reaction; CARBON-DIOXIDE REDUCTION; SINGLE-CRYSTAL; ELECTROCATALYTIC CONVERSION; CU; ELECTROREDUCTION; NANOPARTICLES; CATALYSTS; HYDROCARBONS; SELECTIVITY; COMPOSITE;
D O I
10.1016/j.cclet.2022.107757
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO 2 reduction reaction (CO 2 ER) is an emerging process that involves utilizing CO 2 to produce valuable chemicals and fuels by consuming excess electricity from renewable sources. Recently, Cu and Cu-based nanoparticles, as earth-abundant and economical metal sources, have been attracting significant interest. The chemical and physical properties of Cu-based nanoparticles are modified by different strategies, and CO 2 can be converted into multicarbon products. Among various Cu-based nanoparticles, Cu-based metal-organic frameworks (MOFs) are gaining increasing interest in the field of catalysis because of their textural, topological, and electrocatalytic properties. In this minireview, we summarized and highlighted the main achievements in the research on Cu-based MOFs and their advantages in the CO 2 ER as electrocatalysts, supports, or precursors.(c) 2023 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Copper-based metal-organic frameworks for CO2 reduction: selectivity trends, design paradigms, and perspectives
    Nwosu, Ugochukwu
    Siahrostami, Samira
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (13) : 3740 - 3761
  • [2] Boosting Electrochemical CO2 Reduction on Copper-Based Metal-Organic Frameworks via Valence and Coordination Environment Modulation
    Deng, Jun
    Qiu, Limei
    Xin, Mudi
    He, Wenhui
    Zhao, Wenhui
    Dong, Juncai
    Xu, Guangtong
    SMALL, 2024, 20 (27)
  • [3] Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols
    Albo, Jonathan
    Vallejo, Daniel
    Beobide, Garikoitz
    Castillo, Oscar
    Castano, Pedro
    Irabien, Angel
    CHEMSUSCHEM, 2017, 10 (06) : 1100 - 1109
  • [4] In Situ Synthesis of Copper-Based Metal-Organic Frameworks with Ligand Defects for Electrochemical Reduction of CO2 into C2 Products
    Wu, Xin-Yu
    Li, Zhi-Yuan
    Zhang, Man-Lian
    Lu, Jian-Feng
    Zhu, Zi-Hao
    Zhao, Jian
    Liu, Sui-Jun
    Wen, He-Rui
    INORGANIC CHEMISTRY, 2024, 63 (42) : 19897 - 19905
  • [5] Boosting Electrochemical CO2 Reduction on Metal-Organic Frameworks via Ligand Doping
    Dou, Shuo
    Song, Jiajia
    Xi, Shibo
    Du, Yonghua
    Wang, Jiong
    Huang, Zhen-Feng
    Xu, Zhichuan J.
    Wang, Xin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (12) : 4041 - 4045
  • [6] Current state of copper-based bimetallic materials for electrochemical CO2 reduction: a review
    Zoubir, Otmane
    Atourki, Lahoucine
    Ahsaine, Hassan Ait
    BaQais, Amal
    RSC ADVANCES, 2022, 12 (46) : 30056 - 30075
  • [7] Recent Advances in Electrochemical Sensing Applications of Copper-based Metal-Organic Frameworks
    Li, Cao-Ling
    Wu, Kang-Bing
    Niu, Li
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2023, 51 (04) : 463 - 471
  • [8] Stability and Degradation Mechanisms of Copper-Based Catalysts for Electrochemical CO2 Reduction
    Popovic, Stefan
    Smiljanic, Milutin
    Jovanovic, Primoz
    Vavra, Jan
    Buonsanti, Raffaella
    Hodnik, Nejc
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) : 14736 - 14746
  • [9] Recent Developments in Copper-Based Catalysts for Enhanced Electrochemical CO2 Reduction
    Yesupatham, Manova Santhosh
    Honnappa, Brahmari
    Agamendran, Nithish
    Kumar, Sai Yeswanth
    Chellasamy, Gayathri
    Govindaraju, Saravanan
    Yun, Kyusik
    Selvam, N. Clament Sagaya
    Maruthapillai, Arthanareeswari
    Li, Wei
    Sekar, Karthikeyan
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (06)
  • [10] Metal-Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid
    Xie, Wen-Jun
    Mulina, Olga M.
    Terent'ev, Alexander O.
    He, Liang-Nian
    CATALYSTS, 2023, 13 (07)