Random embedded calibrated statistical blind steganalysis using cross validated support vector machine and support vector machine with particle swarm optimization

被引:5
|
作者
Shankar, Deepa D. [1 ]
Azhakath, Adresya Suresh [2 ]
机构
[1] Abu Dhabi Univ, Abu Dhabi, U Arab Emirates
[2] Danmarks Teknikse Univ, Dept Hlth Technol, Copenhagen, Denmark
关键词
STEGANOGRAPHIC METHOD; IMAGE STEGANOGRAPHY; JPEG IMAGES; SVM; CLASSIFICATION; ALGORITHM; KERNEL;
D O I
10.1038/s41598-023-29453-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The evolvement in digital media and information technology over the past decades have purveyed the internet to be an effectual medium for the exchange of data and communication. With the advent of technology, the data has become susceptible to mismanagement and exploitation. This led to the emergence of Internet Security frameworks like Information hiding and detection. Examples of domains of Information hiding and detection are Steganography and steganalysis respectively. This work focus on addressing possible security breaches using Internet security framework like Information hiding and techniques to identify the presence of a breach. The work involves the use of Blind steganalysis technique with the concept of Machine Learning incorporated into it. The work is done using the Joint Photographic Expert Group (JPEG) format because of its wide use for transmission over the Internet. Stego (embedded) images are created for evaluation by randomly embedding a text message into the image. The concept of calibration is used to retrieve an estimate of the cover (clean) image for analysis. The embedding is done with four different steganographic schemes in both spatial and transform domain namely LSB Matching and LSB Replacement, Pixel Value Differencing and F5. After the embedding of data with random percentages, the first order, the second order, the extended Discrete Cosine Transform (DCT) and Markov features are extracted for steganalysis.The above features are a combination of interblock and intra block dependencies. They had been considered in this paper to eliminate the drawback of each one of them, if considered separately. Dimensionality reduction is applied to the features using Principal Component Analysis (PCA). Block based technique had been used in the images for better accuracy of results. The technique of machine learning is added by using classifiers to differentiate the stego image from a cover image. A comparative study had been during with the classifier names Support Vector Machine and its evolutionary counterpart using Particle Swarm Optimization. The idea of cross validation had also been used in this work for better accuracy of results. Further parameters used in the process are the four different types of sampling namely linear, shuffled, stratified and automatic and the six different kernels used in classification specifically dot, multi-quadratic, epanechnikov, radial and ANOVA to identify what combination would yield a better result.
引用
收藏
页数:30
相关论文
共 50 条
  • [11] Abnormality detection using weighed particle swarm optimization and smooth support vector machine
    Latchoumi, T. P.
    Parthiban, Latha
    BIOMEDICAL RESEARCH-INDIA, 2017, 28 (11): : 4749 - 4751
  • [12] A novel hybrid support vector machine with firebug swarm optimization
    Khademolqorani, Shakiba
    Zafarani, Elham
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [13] Face recognition method based on support vector machine and particle swarm optimization
    Jin Wei
    Zhang Jian-qi
    Zhang Xiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 4390 - 4393
  • [14] Identification of Meat Freshness Based on Particle Swarm Optimization and Support Vector Machine
    Liu, Jing
    Guan, Xiao
    Shen, Yu
    Zhang, Ping
    BIOTECHNOLOGY AND FOOD SERVICE, 2011, 7 : 71 - 75
  • [15] Chaos Particle Swarm Optimization Algorithm for Optimizing the Parameters of Support Vector Machine
    Tian, Zi-de
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, 2015, 17 : 22 - 27
  • [16] Quantum-Behaved Particle Swarm Optimization for Parameter Optimization of Support Vector Machine
    Alaa Tharwat
    Aboul Ella Hassanien
    Journal of Classification, 2019, 36 : 576 - 598
  • [17] Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine
    Yuan, Hua
    Huang, Jianping
    Cao, Chenzhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2009, 10 (07) : 3237 - 3254
  • [18] Optimal design for dividing wall column using support vector machine and particle swarm optimization
    Jia, Shengkun
    Qian, Xing
    Yuan, Xigang
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 125 : 422 - 432
  • [19] Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system
    Wu, Qi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) : 2481 - 2491
  • [20] Hybrid wavelet ν-support vector machine and chaotic particle swarm optimization for regression estimation
    Qi Wu
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14624 - 14632