Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery

被引:2
|
作者
Guerra, Tarciana de Brito C. [1 ]
Nobrega, Taline [1 ]
Morya, Edgard [2 ]
Martins, Allan de M. [1 ]
de Sousa Jr, Vicente A. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Grad Program Elect & Comp Engn PPgEEC, BR-59078970 Natal, Brazil
[2] Santos Dumont Inst, Edmond & Lily Safra Int Inst Neurosci, Grad Program Neuroengn, BR-59280000 Macaiba, Brazil
关键词
EEG; machine learning; random forest; motor imagery; mindwave; V-AMP; BRAIN-COMPUTER INTERFACES;
D O I
10.3390/s23094277
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electroencephalography (EEG) is a fundamental tool for understanding the brain's electrical activity related to human motor activities. Brain-Computer Interface (BCI) uses such electrical activity to develop assistive technologies, especially those directed at people with physical disabilities. However, extracting signal features and patterns is still complex, sometimes delegated to machine learning (ML) algorithms. Therefore, this work aims to develop a ML based on the Random Forest algorithm to classify EEG signals from subjects performing real and imagery motor activities. The interpretation and correct classification of EEG signals allow the development of tools controlled by cognitive processes. We evaluated our ML Random Forest algorithm using a consumer and a research-grade EEG system. Random Forest efficiently distinguishes imagery and real activities and defines the related body part, even with consumer-grade EEG. However, interpersonal variability of the EEG signals negatively affects the classification process.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A Novel Feature Fusion Approach for Classification of Motor Imagery EEG Based on Hierarchical Extreme Learning Machine
    Lijuan Duan
    Zhaoyang Lian
    Yuanhua Qiao
    Juncheng Chen
    Jun Miao
    Mingai Li
    Cognitive Computation, 2024, 16 : 566 - 580
  • [22] Enhancing motor imagery EEG signal decoding through machine learning: A systematic review of recent progress
    Hameed, Ibtehaaj
    Khan, Danish M.
    Ahmed, Syed Muneeb
    Aftab, Syed Sabeeh
    Fazal, Hammad
    Computers in Biology and Medicine, 2025, 185
  • [23] MOTOR-IMAGERY EEG SIGNAL CLASSIFICATION USING OPTIMIZED SUPPORT VECTOR MACHINE BY DIFFERENTIAL EVOLUTION ALGORITHM
    Fard, L. A.
    Jaseb, K.
    Safi, S. m mehdi
    NEW ARMENIAN MEDICAL JOURNAL, 2023, 17 (02): : 78 - 86
  • [24] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [25] Motor Imagery Classification Based on EEG Sensing with Visual and Vibrotactile Guidance
    Batistic, Luka
    Susanj, Diego
    Pincic, Domagoj
    Ljubic, Sandi
    SENSORS, 2023, 23 (11)
  • [26] CNN models for EEG motor imagery signal classification
    Mahmoud Alnaanah
    Moutz Wahdow
    Mohd Alrashdan
    Signal, Image and Video Processing, 2023, 17 : 825 - 830
  • [27] Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network
    Zhang, Kai
    Xu, Guanghua
    Han, Zezhen
    Ma, Kaiquan
    Zheng, Xiaowei
    Chen, Longting
    Duan, Nan
    Zhang, Sicong
    SENSORS, 2020, 20 (16) : 1 - 20
  • [28] CNN models for EEG motor imagery signal classification
    Alnaanah, Mahmoud
    Wahdow, Moutz
    Alrashdan, Mohd
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (03) : 825 - 830
  • [29] Deep learning for motor imagery EEG-based classification: A review
    Al-Saegh, Ali
    Dawwd, Shefa A.
    Abdul-Jabbar, Jassim M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
  • [30] A Deep Learning Method for Classification of EEG Data Based on Motor Imagery
    An, Xiu
    Kuang, Deping
    Guo, Xiaojiao
    Zhao, Yilu
    He, Lianghua
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 203 - 210