DBSAGAN: Dual Branch Split Attention Generative Adversarial Network for Super-Resolution Reconstruction in Remote Sensing Images

被引:4
|
作者
Song, Yu [1 ]
Li, Jianwei [1 ]
Hu, Zhongzheng [1 ]
Cheng, Liangxiao [1 ]
机构
[1] China Ctr Resources Satellite Data & Applicat, Satellite Ground Syst Dept, Beijing 100094, Peoples R China
关键词
Image reconstruction; Superresolution; Remote sensing; Generators; Task analysis; Frequency-domain analysis; Generative adversarial networks; Focal frequency loss; remote sensing images; split attention; super-resolution reconstruction;
D O I
10.1109/LGRS.2023.3266325
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Super-resolution reconstruction methods emerge in an endless stream, but the models proposed by many researchers are not fit for certain types of images, such as remote sensing images. This is because remote sensing images have rich texture details and geometrical structures. Therefore, directly applying previous models to remote sensing images generates unsatisfactory artifacts. In this letter, we propose a dual branch split attention generative adversarial network (DBSAGAN) for super-resolution tasks on remote sensing images. Specifically, the proposed DBSAGAN adopts a dual branch split attention group (DBSAG) as the cascading basic unit in the generator. In addition, we remove batch normalization (BN) layers in the basic unit to improve the generative ability of the network. To reduce the gap between the reconstructed and original images from the frequency domain, we innovatively use focal frequency loss to constrain the network. Experiments demonstrate that the proposed network outperforms existing state-of-the-art methods on the Gaofen-1 (GF-1) remote sensing image dataset.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Super-Resolution Reconstruction of Remote Sensing Images Using Generative Adversarial Network With Shallow Information Enhancement
    Fu, Yujia
    Zhang, Xiangrong
    Wang, Mingyang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8529 - 8540
  • [2] SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution
    Tu, Jingzhi
    Mei, Gang
    Ma, Zhengjing
    Piccialli, Francesco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5662 - 5673
  • [3] Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
    Jia, Sen
    Wang, Zhihao
    Li, Qingquan
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] SUPER-RESOLUTION OF REMOTE SENSING IMAGES BASED ON TRANSFERRED GENERATIVE ADVERSARIAL NETWORK
    Ma, Wen
    Pan, Zongxu
    Guo, Jiayi
    Lei, Bin
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1148 - 1151
  • [5] MFFAGAN: Generative Adversarial Network With Multilevel Feature Fusion Attention Mechanism for Remote Sensing Image Super-Resolution
    Tang, Yinggan
    Wang, Tianjiao
    Liu, Defeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6860 - 6874
  • [6] Deep Residual Dual-Attention Network for Super-Resolution Reconstruction of Remote Sensing Images
    Huang, Bo
    He, Boyong
    Wu, Liaoni
    Guo, Zhiming
    REMOTE SENSING, 2021, 13 (14)
  • [7] The Use of a Stable Super-Resolution Generative Adversarial Network (SSRGAN) on Remote Sensing Images
    Pang, Boyu
    Zhao, Siwei
    Liu, Yinnian
    REMOTE SENSING, 2023, 15 (20)
  • [8] Super-Resolution Reconstruction of Remote Sensing Images of the China-Myanmar Pipeline Based on Generative Adversarial Network
    Jiang, Yuanliang
    Ren, Qingying
    Ren, Yuan
    Liu, Haipeng
    Dong, Shaohua
    Ma, Yundong
    SUSTAINABILITY, 2023, 15 (17)
  • [9] Dual-Path Adversarial Generation Network for Super-Resolution Reconstruction of Remote Sensing Images
    Ren, Zhipeng
    Zhao, Jianping
    Chen, Chunyi
    Lou, Yan
    Ma, Xiaocong
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [10] Dual-branche attention network for super-resolution of remote sensing images
    Huang, Fei
    Xie, Ting
    Liu, Zhengcai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (02) : 492 - 516