Deep learning for classification of thyroid nodules on ultrasound: validation on an independent dataset

被引:3
|
作者
Weng, Jingxi [1 ]
Wildman-Tobriner, Benjamin [2 ]
Buda, Mateusz [3 ]
Yang, Jichen [3 ,5 ]
Ho, Lisa M. [4 ]
Allen, Brian C. [4 ]
Ehieli, Wendy L. [4 ]
Miller, Chad M. [4 ]
Zhang, Jikai [3 ]
Mazurowski, Maciej A. [2 ]
机构
[1] Univ Florida, Dept Radiat Oncol, Gainesville, FL USA
[2] Duke Univ, Dept Radiol, Durham, NC USA
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[4] Duke Univ, Med Ctr, Dept Radiol, Durham, NC USA
[5] Duke Univ, Dept Elect & Comp Engn, 1809 Wrenn Rd, Durham, NC 27708 USA
关键词
Deep learning; Thyroid nodules; Malignancy; Classification; Validation;
D O I
10.1016/j.clinimag.2023.04.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: The purpose is to apply a previously validated deep learning algorithm to a new thyroid nodule ul-trasound image dataset and compare its performances with radiologists.Methods: Prior study presented an algorithm which is able to detect thyroid nodules and then make malignancy classifications with two ultrasound images. A multi-task deep convolutional neural network was trained from 1278 nodules and originally tested with 99 separate nodules. The results were comparable with that of radiol-ogists. The algorithm was further tested with 378 nodules imaged with ultrasound machines from different manufacturers and product types than the training cases. Four experienced radiologists were requested to evaluate the nodules for comparison with deep learning.Results: The Area Under Curve (AUC) of the deep learning algorithm and four radiologists were calculated with parametric, binormal estimation. For the deep learning algorithm, the AUC was 0.69 (95% CI: 0.64-0.75). The AUC of radiologists were 0.63 (95% CI: 0.59-0.67), 0.66 (95% CI:0.61-0.71), 0.65 (95% CI: 0.60-0.70), and 0.63 (95%CI: 0.58-0.67).Conclusion: In the new testing dataset, the deep learning algorithm achieved similar performances with all four radiologists. The relative performance difference between the algorithm and the radiologists is not significantly affected by the difference of ultrasound scanner.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条
  • [1] Deep learning on ultrasound images of thyroid nodules
    Sharifi, Yasaman
    Bakhshali, Mohamad Amin
    Dehghani, Toktam
    DanaiAshgzari, Morteza
    Sargolzaei, Mahdi
    Eslami, Saeid
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 636 - 655
  • [2] Ultrasound Image Classification of Thyroid Nodules Based on Deep Learning
    Yang, Jingya
    Shi, Xiaoli
    Wang, Bing
    Qiu, Wenjing
    Tian, Geng
    Wang, Xudong
    Wang, Peizhen
    Yang, Jiasheng
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [3] Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules
    Song, Junho
    Chai, Young Jun
    Masuoka, Hiroo
    Park, Sun-Won
    Kim, Su-jin
    Choi, June Young
    Kong, Hyoun-Joong
    Lee, Kyu Eun
    Lee, Joongseek
    Kwak, Nojun
    Yi, Ka Hee
    Miyauchi, Akira
    MEDICINE, 2019, 98 (15)
  • [4] Application of Deep Learning in the Prediction of Benign and Malignant Thyroid Nodules on Ultrasound Images
    Lu, Yinghui
    Yang, Yi
    Chen, Wan
    IEEE ACCESS, 2020, 8 : 221468 - 221480
  • [5] Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning
    Yu, Xia
    Wang, Hongjie
    Ma, Liyong
    CURRENT MEDICAL IMAGING, 2020, 16 (02) : 174 - 180
  • [6] A Novel Deep-Learning-Based CADx Architecture for Classification of Thyroid Nodules Using Ultrasound Images
    Volkan Göreke
    Interdisciplinary Sciences: Computational Life Sciences, 2023, 15 : 360 - 373
  • [7] A Novel Deep-Learning-Based CADx Architecture for Classification of Thyroid Nodules Using Ultrasound Images
    Goreke, Volkan
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2023, 15 (03) : 360 - 373
  • [8] Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images
    Zhou, Hui
    Jin, Yinhua
    Dai, Lei
    Zhang, Meiwu
    Qiu, Yuqin
    Wang, Kun
    Tian, Jie
    Zheng, Jianjun
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 127
  • [9] CLASSIFICATION OF THYROID NODULES IN ULTRASOUND IMAGES USING DEEP MODEL BASED TRANSFER LEARNING AND HYBRID FEATURES
    Liu, Tianjiao
    Xie, Shuaining
    Yu, Jing
    Niu, Lijuan
    Sun, Weidong
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 919 - 923
  • [10] Classification of Thyroid Nodules by Using Deep Learning Radiomics Based on Ultrasound Dynamic Video
    Zhang, Chunquan
    Liu, Dan
    Huang, Long
    Zhao, Yu
    Chen, Lili
    Guo, Youmin
    JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (12) : 2993 - 3002