Lightweight attention-guided redundancy-reuse network for real-time semantic segmentation

被引:6
作者
Hu, Xuegang [1 ,2 ]
Xu, Shuhan [1 ,2 ]
Jing, Liyuan [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Key Lab Signal & Informat Proc, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
convolutional neural nets; image segmentation; neural net architecture;
D O I
10.1049/ipr2.12816
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation is a critical topic in computer vision, and it has numerous practical applications, including mobile devices, autonomous driving, and many other fields. However, in these application scenarios, it is often essential for the segmentation models to achieve a balance between efficiency and performance. A lightweight attention-guided redundancy-reuse network (LARNet) was proposed to address this challenge in this paper. Specifically, the multi-scale asymmetric redundancy reuse (MAR) module was designed as the main component of the encoder for dense encoding of contextual semantic features. Furthermore, the efficient attention fusion (EAF) module was established for multi-scale information fusion via the channel and spatial attention mechanisms in the decoder. A series of experiments were conducted to verify the proposed network. The results of tests on multiple datasets suggest that the network has higher accuracy and faster speed than the existing real-time semantic segmentation methods.
引用
收藏
页码:2649 / 2658
页数:10
相关论文
共 48 条
  • [1] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [2] Semantic object classes in video: A high-definition ground truth database
    Brostow, Gabriel J.
    Fauqueur, Julien
    Cipolla, Roberto
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (02) : 88 - 97
  • [3] Chen LC., 2014, SEMANTIC IMAGE SEGME, DOI DOI 10.48550/ARXIV.1412.7062
  • [4] Chen LC., 2017, RETHINKING ATROUS CO
  • [5] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [6] The Cityscapes Dataset for Semantic Urban Scene Understanding
    Cordts, Marius
    Omran, Mohamed
    Ramos, Sebastian
    Rehfeld, Timo
    Enzweiler, Markus
    Benenson, Rodrigo
    Franke, Uwe
    Roth, Stefan
    Schiele, Bernt
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3213 - 3223
  • [7] Rethinking BiSeNet For Real-time Semantic Segmentation
    Fan, Mingyuan
    Lai, Shenqi
    Huang, Junshi
    Wei, Xiaoming
    Chai, Zhenhua
    Luo, Junfeng
    Wei, Xiaolin
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9711 - 9720
  • [8] Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
    Feng, Di
    Haase-Schutz, Christian
    Rosenbaum, Lars
    Hertlein, Heinz
    Glaser, Claudius
    Timm, Fabian
    Wiesbeck, Werner
    Dietmayer, Klaus
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) : 1341 - 1360
  • [9] Convolutional neural network for smoke and fire semantic segmentation
    Frizzi, Sebastien
    Bouchouicha, Moez
    Ginoux, Jean-Marc
    Moreau, Eric
    Sayadi, Mounir
    [J]. IET IMAGE PROCESSING, 2021, 15 (03) : 634 - 647
  • [10] MSCFNet: A Lightweight Network With Multi-Scale Context Fusion for Real-Time Semantic Segmentation
    Gao, Guangwei
    Xu, Guoan
    Yu, Yi
    Xie, Jin
    Yang, Jian
    Yue, Dong
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25489 - 25499