The spectrum of ?31-soundness

被引:1
作者
Aguilera, J. P. [1 ,2 ]
Pakhomov, F. [2 ,3 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Univ Ghent, Dept Math, Krijgslaan 281-S8, B-9000 Ghent, Belgium
[3] Russian Acad Sci, Steklov Math Inst, Ulitsa Gubkina 8, Moscow 117966, Russia
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 381卷 / 2248期
基金
奥地利科学基金会;
关键词
sound theory; ptyx; ordinal number;
D O I
10.1098/rsta.2022.0013
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the ?(1)(3)-soundness spectra of theories. Given a recursively enumerable extension T of ACA(0), O-3(1)(T) is defined as the set of all 2-ptykes on which T is correct about well foundedness. This is a measure of how close T is to being ?(1)(3)-sound. We carry out a proof theoretic classification of theories according to O-3(1)(T), as well as a characterization of the sets of the form O-3(1)(T) n ?(0)(1). Many of the results generalize ton greater than 3.
引用
收藏
页数:18
相关论文
共 5 条
  • [1] Aguilera JP., IN PRESS
  • [2] Girard J-Y., 1982, PROOF THEORY LOGICAL
  • [3] PI-1/2-LOGIC .1. DILATORS
    GIRARD, JY
    [J]. ANNALS OF MATHEMATICAL LOGIC, 1981, 21 (2-3): : 75 - 219
  • [4] GIRARD JY, 1985, P SYMP PURE MATH, V42, P389
  • [5] Pakhomov FN., IN PRESS