First large-scale genomic prediction in the honey bee

被引:12
作者
Bernstein, Richard [1 ]
Du, Manuel [1 ]
Du, Zhipei G. [1 ]
Strauss, Anja S. [1 ]
Hoppe, Andreas [1 ]
Bienefeld, Kaspar [1 ]
机构
[1] Inst Bee Res Hohen Neuendorf, Friedrich Engels Str 32, D-16540 Hohen Neuendorf, Germany
关键词
MAPPING INCLUDING PHENOTYPES; GENETIC EVALUATION; INFORMATION; POPULATION; RELATIVES; SELECTION; GENOTYPES; ACCURACY; PEDIGREE;
D O I
10.1038/s41437-023-00606-9
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Genomic selection has increased genetic gain in several livestock species, but due to the complicated genetics and reproduction biology not yet in honey bees. Recently, 2970 queens were genotyped to gather a reference population. For the application of genomic selection in honey bees, this study analyzes the accuracy and bias of pedigree-based and genomic breeding values for honey yield, three workability traits, and two traits for resistance against the parasite Varroa destructor. For breeding value estimation, we use a honey bee-specific model with maternal and direct effects, to account for the contributions of the workers and the queen of a colony to the phenotypes. We conducted a validation for the last generation and a five-fold cross-validation. In the validation for the last generation, the accuracy of pedigree-based estimated breeding values was 0.12 for honey yield, and ranged from 0.42 to 0.61 for the workability traits. The inclusion of genomic marker data improved these accuracies to 0.23 for honey yield, and a range from 0.44 to 0.65 for the workability traits. The inclusion of genomic data did not improve the accuracy of the disease-related traits. Traits with high heritability for maternal effects compared to the heritability for direct effects showed the most promising results. For all traits except the Varroa resistance traits, the bias with genomic methods was on a similar level compared to the bias with pedigree-based BLUP. The results show that genomic selection can successfully be applied to honey bees.
引用
收藏
页码:320 / 328
页数:9
相关论文
共 63 条
[31]   Tool for genomic selection and breeding to evolutionary adaptation: Development of a 100K single nucleotide polymorphism array for the honey bee [J].
Jones, Julia C. ;
Du, Zhipei G. ;
Bernstein, Richard ;
Meyer, Monique ;
Hoppe, Andreas ;
Schilling, Elmar ;
Ableitner, Martin ;
Juling, Katrin ;
Dick, Regina ;
Strauss, Anja S. ;
Bienefeld, Kaspar .
ECOLOGY AND EVOLUTION, 2020, 10 (13) :6246-6256
[32]   Accuracy of genomic prediction of host resistance to salmon lice in Atlantic salmon (Salmo salar) using imputed high-density genotypes [J].
Kjetsa, M. H. ;
Odegard, J. ;
Meuwissen, T. H. E. .
AQUACULTURE, 2020, 526
[33]   Within- and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep. breeds Latxa, Manech, and Basco-Bearnaise [J].
Legarra, A. ;
Baloche, G. ;
Barillet, F. ;
Astruc, J. M. ;
Soulas, C. ;
Aguerre, X. ;
Arrese, F. ;
Mintegi, L. ;
Lasarte, M. ;
Maeztu, F. ;
Beltran de Heredia, I. ;
Ugarte, E. .
JOURNAL OF DAIRY SCIENCE, 2014, 97 (05) :3200-3212
[34]   Performance of genomic selection in mice [J].
Legarra, Andres ;
Robert-Granie, Christele ;
Manfredi, Eduardo ;
Elsen, Jean-Michel .
GENETICS, 2008, 180 (01) :611-618
[35]   Bee breeding and genetics in Europe [J].
Lodesani, M ;
Costa, C .
BEE WORLD, 2003, 84 (02) :69-85
[36]   Implications of SNP weighting on single-step genomic predictions for different reference population sizes [J].
Lourenco, D. A. L. ;
Fragomeni, B. O. ;
Bradford, H. L. ;
Menezes, I. R. ;
Ferraz, J. B. S. ;
Aguilar, I. ;
Tsuruta, S. ;
Misztal, I. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2017, 134 (06) :463-471
[37]   Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus [J].
Lourenco, D. A. L. ;
Tsuruta, S. ;
Fragomeni, B. O. ;
Masuda, Y. ;
Aguilar, I. ;
Legarra, A. ;
Bertrand, J. K. ;
Amen, T. S. ;
Wang, L. ;
Moser, D. W. ;
Misztal, I. .
JOURNAL OF ANIMAL SCIENCE, 2015, 93 (06) :2653-2662
[38]   Methods for genomic evaluation of a relatively small genotyped dairy population and effect of genotyped cow information in multiparity analyses [J].
Lourenco, D. A. L. ;
Misztal, I. ;
Tsuruta, S. ;
Aguilar, I. ;
Ezra, E. ;
Ron, M. ;
Shirak, A. ;
Weller, J. I. .
JOURNAL OF DAIRY SCIENCE, 2014, 97 (03) :1742-1752
[39]   Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models [J].
Lourenco, D. A. L. ;
Misztal, I. ;
Wang, H. ;
Aguilar, I. ;
Tsuruta, S. ;
Bertrand, J. K. .
JOURNAL OF ANIMAL SCIENCE, 2013, 91 (09) :4090-4098
[40]  
Lourenco DAL, 2018, 11 WORLD C GENETICS