Introducing the Loewner Method as a Data-Driven and Regularization-Free Approach for the Distribution of Relaxation Times Analysis of Lithium-Ion Batteries

被引:10
|
作者
Ruether, Tom [1 ,2 ]
Gosea, Ion Victor [3 ]
Jahn, Leonard [1 ,2 ]
Antoulas, Athanasios C. [3 ,4 ]
Danzer, Michael A. [1 ,2 ]
机构
[1] Univ Bayreuth, Chair Elect Energy Syst, Univ Str 30, D-95447 Bayreuth, Germany
[2] Univ Bayreuth, Bavarian Ctr Battery Technol, Univ Str 30, D-95447 Bayreuth, Germany
[3] Max Planck Inst Dynam & Complex Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
[4] Rice Univ, Elect & Comp Engn Dept, 6100 Mainst, Houston, TX 77005 USA
来源
BATTERIES-BASEL | 2023年 / 9卷 / 02期
关键词
impedance spectroscopy; lithium-ion battery; distribution of relaxation times; process identification; Loewner framework; ELECTROCHEMICAL IMPEDANCE; TEMPERATURE; PERFORMANCE; ANODES;
D O I
10.3390/batteries9020132
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
For the identification of processes in lithium-ion batteries (LIB) by electrochemical impedance spectroscopy, frequency data is often transferred into the time domain using the method of distribution of relaxation times (DRT). As this requires regularization due to the ill-conditioned optimization problem, the investigation of data-driven methods becomes of interest. One promising approach is the Loewner method (LM), which has already had a number of applications in different fields of science but has not been applied to batteries yet. In this work, it is first deployed on synthetic data with predefined time constants and gains. The results are analyzed concerning the choice of model order, the type of processes , i.e., distributed and discrete, and the signal-to-noise ratio. Afterwards, the LM is used to identify and analyze the processes of a cylindrical LIB. To verify the results of this assessment a comparison is made with the generalized DRT at two different states of health of the LIB. It is shown that both methods lead to the same qualitative results. For the assignment of processes as well as for the interpretation of minor gains, the LM shows advantageous behavior, whereas the generalized DRT shows better results for the determination of lumped elements and resistive-inductive processes.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A Data-Driven Approach to Rapidly Identify the Critical Current of Fast-Charging Lithium-Ion Batteries
    Zhou, Zhiyu
    Lu, Bo
    Qian, Yifei
    Chen, Xinsong
    Song, Yicheng
    Zhang, Junqian
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (12)
  • [22] Modeling and health feature extraction method for lithium-ion batteries state of health estimation by distribution of relaxation times
    Su, Zhipeng
    Lai, Jidong
    Su, Jianhui
    Zhou, Chenguang
    Shi, Yong
    Xie, Bao
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [23] Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method
    Fu, Shiyi
    Tao, Shengyu
    Fan, Hongtao
    He, Kun
    Liu, Xutao
    Tao, Yulin
    Zuo, Junxiong
    Zhang, Xuan
    Wang, Yu
    Sun, Yaojie
    APPLIED ENERGY, 2024, 353 (353)
  • [24] A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries
    Song, Yuchen
    Liu, Datong
    Liao, Haitao
    Peng, Yu
    APPLIED ENERGY, 2020, 261 (261)
  • [25] A Data-Driven Method for Lithium-Ion Batteries Remaining Useful Life Prediction Based on Optimal Hyperparameters
    Zhu, Yuhao
    Shang, Yunlong
    Duan, Bin
    Gu, Xin
    Li, Shipeng
    Chen, Guicheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7388 - 7392
  • [26] State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Xu, Changcheng
    Wu, Xiaobo
    Kong, Huifang
    Ge, Suoliang
    Huang, Jie
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [27] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Hybrid Ensembles Allied with Data-Driven Approach
    Zhao, Shuai
    Sun, Daming
    Liu, Yan
    Liang, Yuqi
    ENERGIES, 2025, 18 (05)
  • [28] Comparison of different data-driven methods for estimating the state of charge of lithium-ion batteries
    Kumar, Shivanshu
    Choudhury, Amalendu Bikash
    Bhattacharyya, Himadri Sekhar
    Chanda, Chandan Kumar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 2564 - 2583
  • [29] A hybrid data-driven method optimized by physical rules for online state collaborative estimation of lithium-ion batteries
    Zhang, Ying
    Gu, Pingwei
    Duan, Bin
    Zhang, Chenghui
    ENERGY, 2024, 301
  • [30] Data-driven rapid lifetime prediction method for lithium-ion batteries under diverse fast charging protocols
    Chen, Dinghong
    Zhang, Weige
    Zhang, Caiping
    Sun, Bingxiang
    Zhang, Linjing
    Cong, Xinwei
    JOURNAL OF ENERGY STORAGE, 2023, 74