Per-Pixel Uncertainty Quantification and Reporting for Satellite-Derived Chlorophyll-a Estimates via Mixture Density Networks

被引:16
作者
Saranathan, Arun M. [1 ]
Smith, Brandon [1 ]
Pahlevan, Nima [1 ]
机构
[1] NASA, Sci Syst & Applicat Inc SSAI, Goddard Space Flight Ctr, Global Freshwater Sensing Grp, Greenbelt, MD 20771 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
美国国家航空航天局;
关键词
Uncertainty; Predictive models; Remote sensing; Data models; Biological system modeling; Measurement; Instruments; Aquatic remote sensing; chlorophyll-a (Chla); inland and coastal waters; Landsat-8; machine learning (ML); Sentinel-2; Sentinel-3; INHERENT OPTICAL-PROPERTIES; ATMOSPHERIC CORRECTION ALGORITHMS; NEURAL-NETWORK; WATER-QUALITY; LEARNING TECHNIQUES; COASTAL WATERS; TROPHIC STATE; OCEAN; RETRIEVAL; IMAGER;
D O I
10.1109/TGRS.2023.3234465
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Mixture density networks (MDNs) have emerged as a powerful tool for estimating water-quality indicators, such as chlorophyll-a (Chla) from multispectral imagery. This study validates the use of an uncertainty metric calculated directly from Chla estimates of the MDNs. We consider multispectral remote sensing reflectance spectra (R-rs) for three satellite sensors commonly used in aquatic remote sensing, namely, the ocean and land colour instrument (OLCI), multispectral instrument (MSI), and operational land imager (OLI). First, a study on a labeled database of colocated in situ Chla and R-rs measurements clearly illustrates that the suggested uncertainty metric accurately captures the reduced confidence associated with test data, which is drawn for a different distribution than the training data. This change in distribution maybe due to: 1) random noise; 2) uncertainties in the atmospheric correction; and 3) novel (unseen) data. The experiments on the labeled in situ dataset show that the estimated uncertainty has a correlation with the expected predictive error and can be used as a bound on the predictive error for most samples. To illustrate the ability of the MDNs in generating consistent products from multiple sensors, per-pixel uncertainty maps for three near-coincident images of OLCI, MSI, and OLI are produced. The study also examines temporal trends in OLCI-derived Chla and the associated uncertainties at selected locations over a calendar year. Future work will include uncertainty estimation from MDNs with a multiparameter retrieval capability for hyperspectral and multispectral imagery.
引用
收藏
页数:18
相关论文
共 66 条
[51]   Evaluation of Atmospheric Correction Algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in Highly Turbid Estuarine Waters [J].
Renosh, Pannimpullath Remanan ;
Doxaran, David ;
De Keukelaere, Liesbeth ;
Ignacio Gossn, Juan .
REMOTE SENSING, 2020, 12 (08)
[52]   Landsat-8: Science and product vision for terrestrial global change research [J].
Roy, D. P. ;
Wulder, M. A. ;
Loveland, T. R. ;
Woodcock, C. E. ;
Allen, R. G. ;
Anderson, M. C. ;
Helder, D. ;
Irons, J. R. ;
Johnson, D. M. ;
Kennedy, R. ;
Scambos, Ta. ;
Schaaf, C. B. ;
Schott, J. R. ;
Sheng, Y. ;
Vermote, E. F. ;
Belward, A. S. ;
Bindschadler, R. ;
Cohen, W. B. ;
Gao, F. ;
Hipple, J. D. ;
Hostert, P. ;
Huntington, J. ;
Justice, C. O. ;
Kilic, A. ;
Kovalskyy, V. ;
Lee, Z. P. ;
Lymbumer, L. ;
Masek, J. G. ;
McCorkel, J. ;
Shuai, Y. ;
Trezza, R. ;
Vogelmann, J. ;
Wynne, R. H. ;
Zhu, Z. .
REMOTE SENSING OF ENVIRONMENT, 2014, 145 :154-172
[53]  
Salakhutdinov R., 2008, ICML, P880
[54]   Neural network for emulation of an inverse model - operational derivation of Case II water properties from MERIS data [J].
Schiller, H ;
Doerffer, R .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (09) :1735-1746
[55]  
Shinde K, 2020, Arxiv, DOI arXiv:2007.07630
[56]   A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks [J].
Smith, Brandon ;
Pahlevan, Nima ;
Schalles, John ;
Ruberg, Steve ;
Errera, Reagan ;
Ma, Ronghua ;
Giardino, Claudia ;
Bresciani, Mariano ;
Barbosa, Claudio ;
Moore, Tim ;
Fernandez, Virginia ;
Alikas, Krista ;
Kangro, Kersti .
FRONTIERS IN REMOTE SENSING, 2021, 1
[57]   OCEANIC CHLOROPHYLL CONCENTRATIONS AS DETERMINED BY SATELLITE (NIMBUS-7 COASTAL ZONE COLOR SCANNER) [J].
SMITH, RC ;
BAKER, KS .
MARINE BIOLOGY, 1982, 66 (03) :269-279
[58]   Uniqueness in remote sensing of the inherent optical properties of ocean water [J].
Sydor, M ;
Gould, RW ;
Arnone, RA ;
Haltrin, VI ;
Goode, W .
APPLIED OPTICS, 2004, 43 (10) :2156-2162
[59]   First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery [J].
Toming, Kaire ;
Kutser, Tiit ;
Laas, Alo ;
Sepp, Margot ;
Paavel, Birgot ;
Noges, Tiina .
REMOTE SENSING, 2016, 8 (08)
[60]   Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters [J].
Vanhellemont, Quinten ;
Ruddick, Kevin .
REMOTE SENSING OF ENVIRONMENT, 2021, 256