Per-Pixel Uncertainty Quantification and Reporting for Satellite-Derived Chlorophyll-a Estimates via Mixture Density Networks

被引:16
作者
Saranathan, Arun M. [1 ]
Smith, Brandon [1 ]
Pahlevan, Nima [1 ]
机构
[1] NASA, Sci Syst & Applicat Inc SSAI, Goddard Space Flight Ctr, Global Freshwater Sensing Grp, Greenbelt, MD 20771 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
美国国家航空航天局;
关键词
Uncertainty; Predictive models; Remote sensing; Data models; Biological system modeling; Measurement; Instruments; Aquatic remote sensing; chlorophyll-a (Chla); inland and coastal waters; Landsat-8; machine learning (ML); Sentinel-2; Sentinel-3; INHERENT OPTICAL-PROPERTIES; ATMOSPHERIC CORRECTION ALGORITHMS; NEURAL-NETWORK; WATER-QUALITY; LEARNING TECHNIQUES; COASTAL WATERS; TROPHIC STATE; OCEAN; RETRIEVAL; IMAGER;
D O I
10.1109/TGRS.2023.3234465
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Mixture density networks (MDNs) have emerged as a powerful tool for estimating water-quality indicators, such as chlorophyll-a (Chla) from multispectral imagery. This study validates the use of an uncertainty metric calculated directly from Chla estimates of the MDNs. We consider multispectral remote sensing reflectance spectra (R-rs) for three satellite sensors commonly used in aquatic remote sensing, namely, the ocean and land colour instrument (OLCI), multispectral instrument (MSI), and operational land imager (OLI). First, a study on a labeled database of colocated in situ Chla and R-rs measurements clearly illustrates that the suggested uncertainty metric accurately captures the reduced confidence associated with test data, which is drawn for a different distribution than the training data. This change in distribution maybe due to: 1) random noise; 2) uncertainties in the atmospheric correction; and 3) novel (unseen) data. The experiments on the labeled in situ dataset show that the estimated uncertainty has a correlation with the expected predictive error and can be used as a bound on the predictive error for most samples. To illustrate the ability of the MDNs in generating consistent products from multiple sensors, per-pixel uncertainty maps for three near-coincident images of OLCI, MSI, and OLI are produced. The study also examines temporal trends in OLCI-derived Chla and the associated uncertainties at selected locations over a calendar year. Future work will include uncertainty estimation from MDNs with a multiparameter retrieval capability for hyperspectral and multispectral imagery.
引用
收藏
页数:18
相关论文
共 66 条
[1]  
Abadi M., 2016, PREPRINT, DOI DOI 10.48550/ARXIV.1603.04467
[2]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[3]  
Amodei D, 2016, Arxiv, DOI [arXiv:1606.06565, 10.48550/arXiv.1606.06565]
[4]  
Bishop C. M., 1994, Mixture density networks, DOI DOI 10.1007/978-3-322-81570-58
[5]   The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms [J].
Brewin, Robert J. W. ;
Sathyendranath, Shubha ;
Mueller, Dagmar ;
Brockrnann, Carsten ;
Deschamps, Pierre-Yves ;
Devred, Emmanuel ;
Doerffer, Roland ;
Fomferra, Norman ;
Franz, Bryan ;
Grant, Mike ;
Groom, Steve ;
Horseman, Andrew ;
Hu, Chuanmin ;
Krasemann, Hajo ;
Lee, ZhongPing ;
Maritorena, Stephane ;
Melin, Frederic ;
Peters, Marco ;
Platt, Trevor ;
Regner, Peter ;
Smyth, Tim ;
Steinmetz, Francois ;
Swinton, John ;
Werdell, Jeremy ;
White, George N., III .
REMOTE SENSING OF ENVIRONMENT, 2015, 162 :271-294
[6]   Are Harmful Algal Blooms Becoming the Greatest Inland Water Quality Threat to Public Health and Aquatic Ecosystems? [J].
Brooks, Bryan W. ;
Lazorchak, James M. ;
Howard, Meredith D. A. ;
Johnson, Mari-Vaughn V. ;
Morton, Steve L. ;
Perkins, Dawn A. K. ;
Reavie, Euan D. ;
Scott, Geoffrey I. ;
Smith, Stephanie A. ;
Steevens, Jeffery A. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2016, 35 (01) :6-13
[7]   OPTICAL WATER-QUALITY MODEL OF LAKE-ONTARIO .1. DETERMINATION OF THE OPTICAL-CROSS-SECTIONS OF ORGANIC AND INORGANIC PARTICULATES IN LAKE-ONTARIO [J].
BUKATA, RP ;
JEROME, JH ;
BRUTON, JE ;
JAIN, SC ;
ZWICK, HH .
APPLIED OPTICS, 1981, 20 (09) :1696-1703
[8]   A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes [J].
Cao, Zhigang ;
Ma, Ronghua ;
Duan, Hongtao ;
Pahlevan, Nima ;
Melack, John ;
Shen, Ming ;
Xue, Kun .
REMOTE SENSING OF ENVIRONMENT, 2020, 248
[9]   TROPHIC STATE INDEX FOR LAKES [J].
CARLSON, RE .
LIMNOLOGY AND OCEANOGRAPHY, 1977, 22 (02) :361-369
[10]   Health effects of toxin-producing cyanobacteria: "The CyanoHABs" [J].
Carmichael, WW .
HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2001, 7 (05) :1393-1407