The Existence of One Solution for Impulsive Differential Equations via Variational Methods

被引:0
作者
Rouhani, Zhaleh [1 ]
Afrouzi, Ghasem A. [1 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babolsar, Iran
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2023年 / 41卷
关键词
Existence result; boundary value problem; impulsive condition; variational methods; critical point theory; BOUNDARY-VALUE-PROBLEMS; DIRICHLET PROBLEMS; PERIODIC-SOLUTIONS; MULTIPLICITY;
D O I
10.5269/bspm.48439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of at least one non-trivial weak solution for a nonlinear Dirichlet bound-ary value problem subject to perturbations of impulsive terms via employing a critical point theorem for differentiable functionals.
引用
收藏
页数:1
相关论文
共 29 条
[1]   Some remarks for one-dimensional mean curvature problems through a local minimization principle [J].
Afrouzi, Ghasem A. ;
Hadjian, Armin ;
Bisci, Giovanni Molica .
ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (04) :427-441
[2]   An application of variational method to a class of Dirichlet boundary value problems with impulsive effects [J].
Bai, Liang ;
Dai, Binxiang .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09) :2607-2624
[3]   A critical point approach to boundary value problems on the real line [J].
Bohner, Martin ;
Caristi, Giuseppe ;
Heidarkhani, Shapour ;
Moradi, Shahin .
APPLIED MATHEMATICS LETTERS, 2018, 76 :215-220
[4]   Infinitely many solutions for a boundary value problem with impulsive effects [J].
Bonanno, Gabriele ;
Di Bella, Beatrice ;
Henderson, Johnny .
BOUNDARY VALUE PROBLEMS, 2013,
[5]  
Bonanno G, 2013, ELECTRON J DIFFER EQ
[6]   Variational Approach to Impulsive Differential Equations with Dirichlet Boundary Conditions [J].
Chen, Huiwen ;
Li, Jianli .
BOUNDARY VALUE PROBLEMS, 2010,
[7]   New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects [J].
Chen, Peng ;
Tang, X. H. .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :723-739
[8]   Impulsive periodic solutions of first-order singular differential equations [J].
Chu, Jifeng ;
Nieto, Juan J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :143-150
[9]   Existence results for one-dimensional fractional equations [J].
Galewski, Marek ;
Bisci, Giovanni Molica .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) :1480-1492
[10]   EXISTENCE OF SOLUTIONS TO AN IMPULSIVE DIRICHLET BOUNDARY VALUE PROBLEM [J].
Graef, John R. ;
Heidarkhani, Shapour ;
Kong, Lingju .
FIXED POINT THEORY, 2018, 19 (01) :225-234