Multiplicative anti-derivations of generalized n-matrix rings

被引:2
作者
Ferreira, B. L. M. [1 ]
Sandhu, G. S. [2 ]
机构
[1] Fed Univ Technol Parana Brazil, Professora Laura Pacheco Bastos Ave 800, BR-85053510 Guarapuava, PR, Brazil
[2] Patel Mem Natl Coll, Dept Math, Rajpura 140401, India
关键词
Additivity; multiplicative anti-derivation; derivation; generalized n-matrix rings; FUNCTIONAL-EQUATIONS; ADDITIVITY; MAPPINGS; MAPS;
D O I
10.1142/S0219498824500798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that every multiplicative anti-derivation map of an arbitrary generalized n-matrix ring is additive. Even more, as consequence, we get the same conclusion for the class of triangular n-matrix rings, unital prime rings with a nontrivial idempotent, standard operator algebras and factor von Neumann algebras.
引用
收藏
页数:10
相关论文
共 17 条
[1]   Multiplicative Lie derivations on triangular n-matrix rings [J].
Chen, Huimin ;
Qi, Xiaofei .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07) :1230-1251
[2]   TensorFI: A Flexible Fault Injection Framework for TensorFlow Applications [J].
Chen, Zitao ;
Narayanan, Niranjhana ;
Fang, Bo ;
Li, Guanpeng ;
Pattabiraman, Karthik ;
DeBardeleben, Nathan .
2020 IEEE 31ST INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE 2020), 2020, :426-435
[3]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[4]  
Ferreira JCD, 2021, B IRAN MATH SOC, V47, P679, DOI 10.1007/s41980-020-00406-5
[5]   Additivity of n-Multiplicative Maps on Alternative Rings [J].
da Motta Ferreira, Joao Carlos ;
Macedo Ferreira, Bruno Leonardo .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (04) :1557-1568
[6]  
Daif M. N., 1991, Int. J. Math. Math. Sci., V14, P615, DOI DOI 10.1155/S0161171291000844
[7]  
Ferreira B. L. M., 2022, ARXIV
[8]  
Ferreira B. L. M., 2014, Int. J. Math. Game Theory Algebr., V23, P1
[9]  
Jabeen A., 2021, ANN U FERRARA, V67, P293
[10]   Nonlinear mappings preserving product XY plus YX* on factor von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2339-2345