A Survey on Adversarial Domain Adaptation

被引:29
|
作者
Zonoozi, Mahta HassanPour [1 ]
Seydi, Vahid [1 ]
机构
[1] Islamic Azad Univ, Fac Tech & Engn, South Tehran Branch, Tehran, Iran
关键词
Domain adaptation; Adversarial learning; Domain shift;
D O I
10.1007/s11063-022-10977-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Having a lot of labeled data is always a problem in machine learning issues. Even by collecting lots of data hardly, shift in data distribution might emerge because of differences in source and target domains. The shift would make the model to face with problems in test step. Therefore, the necessity of using domain adaptation emerges. There are three techniques in the field of domain adaptation namely discrepancy based, adversarial based and reconstruction based methods. For domain adaptation, adversarial learning approaches showed state-of-the-art performance. Although there are some comprehensive surveys about domain adaptation, we technically focus on adversarial based domain adaptation methods. We examine each proposed method in detail with respect to their structures and objective functions. The common aspect of proposed methods besides domain adaptation is considering the target labels are predicted as accurately as possible. It can be represented by some methods such as metric learning and multi-adversarial discriminators as are used in some of the papers. Also, we address the negative transfer issue for dissimilar distributions and propose the addition of clustering heuristics to the underlying structures for future research.
引用
收藏
页码:2429 / 2469
页数:41
相关论文
共 50 条
  • [21] Prototype learning for adversarial domain adaptation
    Fang, Yuchun
    Chen, Chen
    Zhang, Wei
    Wu, Jiahua
    Zhang, Zhaoxiang
    Xie, Shaorong
    PATTERN RECOGNITION, 2024, 155
  • [22] Adversarial Domain Adaptation for Cell Segmentation
    Haq, Mohammad Minhazul
    Huang, Junzhou
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 277 - 287
  • [23] Stochastic Adversarial Learning for Domain Adaptation
    Chien, Jen-Tzung
    Huang, Ching-Wei
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [24] Adversarial Weighting for Domain Adaptation in Regression
    de Mathelin, Antoine
    Richard, Guillaume
    Deheeger, Francois
    Mougeot, Mathilde
    Vayatis, Nicolas
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 49 - 56
  • [25] On Target Shift in Adversarial Domain Adaptation
    Li, Yitong
    Murias, Michael
    Major, Samantha
    Dawson, Geraldine
    Carlson, David E.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 616 - 625
  • [26] Domain-Symmetric Networks for Adversarial Domain Adaptation
    Zhang, Yabin
    Tang, Hui
    Jia, Kui
    Tan, Mingkui
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5026 - 5035
  • [27] Domain compensatory adversarial networks for partial domain adaptation
    Junchu Huang
    Pengyu Zhang
    Zhiheng Zhou
    Kefeng Fan
    Multimedia Tools and Applications, 2021, 80 : 11255 - 11272
  • [28] Domain compensatory adversarial networks for partial domain adaptation
    Huang, Junchu
    Zhang, Pengyu
    Zhou, Zhiheng
    Fan, Kefeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (07) : 11255 - 11272
  • [29] Domain Adversarial Reinforcement Learning for Partial Domain Adaptation
    Chen, Jin
    Wu, Xinxiao
    Duan, Lixin
    Gao, Shenghua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 539 - 553
  • [30] Domain adversarial tangent subspace alignment for explainable domain adaptation
    Raab, Christoph
    Roeder, Manuel
    Schleif, Frank-Michael
    NEUROCOMPUTING, 2022, 506 : 418 - 429