Filtering airborne LIDAR data by using fully convolutional networks

被引:5
|
作者
Varlik, Abdullah [1 ]
Uray, Firat [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Geomat Engn, Konya, Turkey
关键词
Lidar; Deep learning; Point clouds; Point cloud classification; Point cloud segmentation; Remote sensing; NEURAL-NETWORK; POINT CLOUDS; CLASSIFICATION; SEGMENTATION; ALGORITHM; AREAS;
D O I
10.1080/00396265.2021.1996798
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The classification of LIDAR point clouds has always been a challenging task. Classification refers to label each point in different categories, such as ground, vegetation or building. The success of deep learning techniques in image processing tasks have encouraged researchers to use deep neural networks for classification of LIDAR point clouds. In this paper, we proposed a U-Net based architecture capable of classifying LIDAR data. The results indicated that our network model achieved an average F1 score of 91% over all three classes (ground, vegetation and building) for our best model.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [31] A two-stage algorithm for ground filtering of airborne laser scanning data
    Kumar, Bhavesh
    Yadav, Manohar
    Lohani, Bharat
    Singh, Ajai Kumar
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (20) : 6757 - 6783
  • [32] A Progressive Plane Detection Filtering Method for Airborne LiDAR Data in Forested Landscapes
    Cai, Shangshu
    Liang, Xinlian
    Yu, Sisi
    FORESTS, 2023, 14 (03):
  • [33] Three-Dimensional Reconstruction of Large Multilayer Interchange Bridge Using Airborne LiDAR Data
    Cheng, Liang
    Wu, Yang
    Wang, Yu
    Zhong, Lishan
    Chen, Yanming
    Li, Manchun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (02) : 691 - 708
  • [34] LIDAR-camera fusion for road detection using fully convolutional neural networks
    Caltagirone, Luca
    Bellone, Mauro
    Svensson, Lennart
    Wande, Mattias
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 111 : 125 - 131
  • [35] Filtering Airborne Lidar Data by Modified White Top-Hat Transform with Directional Edge Constraints
    Li, Yong
    Yong, Bin
    Wu, Huayi
    An, Ru
    Xu, Hanwei
    Xu, Jia
    He, Qisheng
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2014, 80 (02): : 133 - 141
  • [36] Tidal Creek Extraction from Airborne LiDAR Data Using Ground Filtering Techniques
    Kim, Hyejin
    Kim, Yongil
    Lee, Jaebin
    KSCE JOURNAL OF CIVIL ENGINEERING, 2020, 24 (09) : 2767 - 2783
  • [37] VOXEL BASED SEGMENTATION OF LARGE AIRBORNE TOPOBATHYMETRIC LIDAR DATA
    Boerner, R.
    Hoegner, L.
    Stilla, U.
    ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 107 - 114
  • [38] Slope adaptive based filtering for airborne LIDAR
    Yang, Xiao Yun
    Cen, Min Yi
    Liang, Xin
    VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 1999 - 2004
  • [39] A Semi-automatic Algorithm on Extracting Road Networks from Airborne LiDAR Data
    Li, Feng
    Cui, Ximin
    Yuan, Debao
    Hu, Kailong
    Xu, Wanyang
    ADVANCES IN INDUSTRIAL AND CIVIL ENGINEERING, PTS 1-4, 2012, 594-597 : 2418 - 2421
  • [40] LiDAR Data Classification Using Morphological Profiles and Convolutional Neural Networks
    Wang, Aili
    He, Xin
    Ghamisi, Pedram
    Chen, Yushi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) : 774 - 778