Filtering airborne LIDAR data by using fully convolutional networks

被引:5
|
作者
Varlik, Abdullah [1 ]
Uray, Firat [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Geomat Engn, Konya, Turkey
关键词
Lidar; Deep learning; Point clouds; Point cloud classification; Point cloud segmentation; Remote sensing; NEURAL-NETWORK; POINT CLOUDS; CLASSIFICATION; SEGMENTATION; ALGORITHM; AREAS;
D O I
10.1080/00396265.2021.1996798
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The classification of LIDAR point clouds has always been a challenging task. Classification refers to label each point in different categories, such as ground, vegetation or building. The success of deep learning techniques in image processing tasks have encouraged researchers to use deep neural networks for classification of LIDAR point clouds. In this paper, we proposed a U-Net based architecture capable of classifying LIDAR data. The results indicated that our network model achieved an average F1 score of 91% over all three classes (ground, vegetation and building) for our best model.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [21] A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data
    Chen, Chuanfa
    Li, Yanyan
    Li, Wei
    Dai, Honglei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 82 : 1 - 9
  • [22] A revised progressive TIN densification for filtering airborne LiDAR data
    Nie, Sheng
    Wang, Cheng
    Dong, Pinliang
    Xi, Xiaohuan
    Luo, Shezhou
    Qin, Haiming
    MEASUREMENT, 2017, 104 : 70 - 77
  • [23] Investigating ancient agricultural field systems in Sweden from airborne LIDAR data by using convolutional neural network
    Kucukdemirci, Melda
    Landeschi, Giacomo
    Ohlsson, Mattias
    Dell'Unto, Nicolo
    ARCHAEOLOGICAL PROSPECTION, 2023, 30 (02) : 209 - 219
  • [24] Ground and Multi-Class Classification of Airborne Laser Scanner Point Clouds Using Fully Convolutional Networks
    Rizaldy, Aldino
    Persello, Claudio
    Gevaert, Caroline
    Elberink, Sander Oude
    Vosselman, George
    REMOTE SENSING, 2018, 10 (11)
  • [25] Filtering Airborne LiDAR Data in Forested Environments Based on Multi-Directional Narrow Window and Cloth Simulation
    Cai, Shangshu
    Yu, Sisi
    REMOTE SENSING, 2023, 15 (05)
  • [26] Detecting urban tree canopy using convolutional neural networks with aerial images and LiDAR data
    Nanji, Hossein Ghiasvand
    JOURNAL OF PLANT DISEASES AND PROTECTION, 2024, 131 (02) : 571 - 585
  • [27] Automatic morphological filtering algorithm for airborne lidar data in urban areas
    Hui, Zhenyang
    Wang, Leyang
    Ziggah, Yao Yevenyo
    Cai, Shangshu
    Xia, Yuanping
    APPLIED OPTICS, 2019, 58 (04) : 1164 - 1173
  • [28] Tree Annotations in LiDAR Data Using Point Densities and Convolutional Neural Networks
    Gupta, Ananya
    Byrne, Jonathan
    Moloney, David
    Watson, Simon
    Yin, Hujun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 971 - 981
  • [29] Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification
    Zhang, Jixian
    Lin, Xiangguo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 81 : 44 - 59
  • [30] Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks
    Mayra, Janne
    Keski-Saari, Sarita
    Kivinen, Sonja
    Tanhuanpaa, Topi
    Hurskainen, Pekka
    Kullberg, Peter
    Poikolainen, Laura
    Viinikka, Arto
    Tuominen, Sakari
    Kumpula, Timo
    Vihervaara, Petteri
    REMOTE SENSING OF ENVIRONMENT, 2021, 256