A potential of iron slag-based soil amendment as a suppressor of greenhouse gas (CH4 and N2O) emissions in rice paddy

被引:2
|
作者
Galgo, Snowie Jane C. [1 ,2 ]
Canatoy, Ronley C. [3 ]
Lim, Ji Yeon [1 ]
Park, Hyon Chol [4 ]
Kim, Pil Joo [1 ,2 ]
机构
[1] Gyeongsang Natl Univ, BK21 Program, Div Appl Life Sci, Jinju, South Korea
[2] Gyeongsang Natl Univ, Inst Agr & Life Sci, Jinju, South Korea
[3] Cent Mindanao Univ, Coll Agr, Dept Soil Sci, Maramag, Philippines
[4] POSCO Co Ltd, Pohang, South Korea
基金
新加坡国家研究基金会;
关键词
silicate fertilizer; methane; nitrous oxide; electron transfer; iron; NITROUS-OXIDE PRODUCTION; SILICATE FERTILIZER; CROPPING SYSTEMS; DENITRIFICATION; OXIDATION; NITRIFICATION; ACCUMULATION; REDUCTION; INTENSITY; BACTERIA;
D O I
10.3389/fenvs.2024.1290969
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Iron slag-based silicate fertilizer (SF) has been utilized as a soil amendment in rice paddy fields for over 50 years. SF, which contains electron acceptors such as oxidized iron (Fe3+) compounds, is known to reduce methane (CH4) emissions, which have a global warming potential (GWP) of 23, higher than that of carbon dioxide (CO2). However, the dynamics of nitrous oxide (N2O), which has a GWP of 265, were questionable. Since the reduced Fe (Fe2+) can react as an electron donor, SF application might suppress N2O emissions by progressing N2O into nitrogen gas (N-2) during the denitrification process. To verify the influence of SF application on two major greenhouse gas (GHG) dynamics during rice cultivation, three different kinds of SF were prepared by mixing iron rust (>99%, Fe2O3) as an electron acceptor with different ratios (0, 2.5, and 5%) and applied at the recommended level (1.5 Mg ha(-1)) for rice cultivation. SF application was effective in decreasing CH4 emissions in the earlier rice cropping season, and seasonal CH4 flux was more highly decreased with increasing the mixing ratio of iron rust from an average of 19% to 38%. Different from CH4 emissions, approximately 70% of seasonal N2O flux was released after drainage for rice harvesting. However, SF incorporation was very effective in decreasing N2O emissions by approximately 40% over the control. Reduced Fe2+ can be simultaneously oxidized into Fe3+ by releasing free electrons. The increased electron availability might develop more denitrification processes into N-2 gas rather than NO and N2O and then decrease N2O emissions in the late rice cultivation season. We could find evidence of a more suppressed N2O flux by applying the electron acceptor-added SFs (SF2.5 and SF5.0) to a 49%-56% decrease over the control. The SF application was effective in increasing rice productivity, which showed a negative-quadratic response to the available silicate (SiO2) concentration in the soil at the harvesting stage. Grain yield was maximized at approximately 183 mg kg(-1) of the available SiO2 concentration in the Korean rice paddy, with a 16% increase over no-SF application. Consequently, SF has an attractive potential as a soil amendment in rice paddy to decrease GHG emission impacts and increase rice productivity.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Effect of slag-type fertilizers on N2O flux from komatsuna vegetated soil and CH4 flux from paddy vegetated soil
    Singla, Ankit
    Inubushi, Kazuyuki
    PADDY AND WATER ENVIRONMENT, 2015, 13 (01) : 43 - 50
  • [32] Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region
    Pennock, Dan
    Yates, Thomas
    Bedard-Haughn, Angela
    Phipps, Kim
    Farrell, Richard
    McDougal, Rhonda
    GEODERMA, 2010, 155 (3-4) : 308 - 319
  • [33] Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic
    Hlavácová, E
    Rulík, M
    Cáp, L
    Mach, V
    ARCHIV FUR HYDROBIOLOGIE, 2006, 165 (03): : 339 - 353
  • [34] Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems?
    Sanz-Cobena, A.
    Garcia-Marco, S.
    Quemada, M.
    Gabriel, J. L.
    Almendros, Patricia
    Vallejo, A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 466 : 164 - 174
  • [35] Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
    Merbold, Lutz
    Decock, Charlotte
    Eugster, Werner
    Fuchs, Kathrin
    Wolf, Benjamin
    Buchmann, Nina
    Hortnagl, Lukas
    BIOGEOSCIENCES, 2021, 18 (04) : 1481 - 1498
  • [36] Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system
    Yao, Zhisheng
    Zheng, Xunhua
    Zhang, Yanan
    Liu, Chunyan
    Wang, Rui
    Lin, Shan
    Zuo, Qiang
    Butterbach-Bahl, Klaus
    SCIENTIFIC REPORTS, 2017, 7
  • [37] Regulating CH4, N2O, and NO emissions from an alkaline paddy field under rice-wheat rotation with controlled release N fertilizer
    Lan, Ting
    Zhang, Heng
    Han, Yong
    Deng, Ouping
    Tang, Xiaoyan
    Luo, Ling
    Zeng, Jian
    Chen, Guangdeng
    Wang, Changquan
    Gao, Xuesong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (14) : 18246 - 18259
  • [38] The effect of grassland conversion on CH4 and N2O emissions and removals
    Li, Y
    Lin, ED
    Yang, ZW
    Wang, YQ
    NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : 251 - 256
  • [39] Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems
    Liang, Hao
    Xu, Junzeng
    Hou, Huijing
    Qi, Zhiming
    Yang, Shihong
    Li, Yawei
    Hu, Kelin
    AGRICULTURAL SYSTEMS, 2022, 203
  • [40] Reduction of N2O and CH4 emissions by designing agricultural production processes -: potential and limitations
    Ackermann, I
    Plöchl, M
    NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 291 - 296