Two-grid algorithm for two-dimensional linear Schrödinger equation by the mixed finite element method

被引:0
作者
Wang, Jianyun [1 ]
Tian, Zhikun [2 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou 412007, Hunan, Peoples R China
[2] Hunan Inst Engn, Sch Computat Sci & Elect, Xiangtan 411104, Hunan, Peoples R China
关键词
Schrodinger equation; -grid algorithm; Mixed finite element method; Backward Euler scheme; NONLINEAR SCHRODINGER-EQUATION; DISCONTINUOUS GALERKIN METHODS; SUPERCONVERGENCE ANALYSIS; DISCRETIZATION; SCHEME;
D O I
10.1016/j.rinam.2023.100404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new two-grid algorithm for solving two-dimensional Schrodinger equation in semi-discrete and fully discrete mixed finite element scheme, respectively. With this algorithm, the solution of the Schrodinger equation on a fine grid can be reduced to the original problem on a much coarser grid together with two Poisson equations on the fine grid. In addition, we obtain error results of the two-grid solution. At last, a numerical experiment is provided to demonstrate the efficiency of the two-grid algorithm.
引用
收藏
页数:9
相关论文
共 38 条
[1]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[2]   Discontinuous Galerkin methods for the linear Schrodinger equation in non-cylindrical domains [J].
Antonopoulou, D. C. ;
Plexousakis, M. .
NUMERISCHE MATHEMATIK, 2010, 115 (04) :585-608
[3]   Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semiclassical regimes [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :27-64
[4]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[5]   Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrodinger equation [J].
Cai, Wentao ;
Li, Jian ;
Chen, Zhangxin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (06) :1311-1330
[6]  
Chen HJ, 2009, J COMPUT MATH, V27, P315
[7]   Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods [J].
Chen, Luoping ;
Chen, Yanping .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (03) :383-401
[8]   A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations [J].
Chen, YP ;
Huang, YQ ;
Yu, DH .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (02) :193-209
[9]   Two-grid discretization schemes for nonlinear Schrodinger equations [J].
Chien, C. -S. ;
Huang, H. -T. ;
Jeng, B. -W. ;
Li, Z. -C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) :549-571
[10]  
Dawson C. N., 1994, Contemp Math, V180, P191, DOI 10.1090 conm 180 01971. / / /