Trace Cu2+ detection based on GH-PEDOT:PSS-Pt NP-modified glassy carbon electrode

被引:2
作者
Hao, Changshi [1 ]
Wang, Yiding [1 ]
Wu, Hongpeng [2 ]
Duan, Shaojing [1 ]
Bo, Liu [1 ]
Yan, Luting [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Phys Sci & Engn, Dept Mat, Beijing 100044, Peoples R China
[2] CECEP Tangshan Environm Equipment Co Ltd, Tangshan 063000, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL DETECTION; COPPER; IONS; ARSENIC(III); SPECTROMETRY; GENERATION; MERCURY; WATER;
D O I
10.1007/s10854-023-11882-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We successfully developed a GH-PP-Pt/GCE electrode by compounding graphene hydrogel (GH) with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), and in situ electrodeposition of Pt nanoparticles. The experimental results prove that the performance of GH-PP-Pt/GCE to trace copper ions significantly improved, the sensitivity reaches 45.673 mu A/mu mol L-1, the limit of detection is as low as 9.9 nmol L-1, and the linear range is 0.08-10 mu mol L-1. Its detection ability is at a relatively high level among the existing Cu2+ electrochemical detection sensors, and the repeatability, stability, and anti-interference are good.
引用
收藏
页数:11
相关论文
共 35 条
[1]   DETERMINATION OF ARSENIC(III) AND TOTAL ARSENIC BY ATOMIC-ABSORPTION SPECTROSCOPY [J].
AGGETT, J ;
ASPELL, AC .
ANALYST, 1976, 101 (1202) :341-347
[2]   Confirmation of an acute no-ob served-adverse-effect and low-observed-adverse-effect level for copper in bottled drinking water in a multi-site international study [J].
Araya, M ;
Chen, BH ;
Klevay, LM ;
Strain, JJ ;
Johnson, L ;
Robson, P ;
Shi, W ;
Nielsen, F ;
Zhu, HG ;
Olivares, M ;
Pizarro, F ;
Haber, LT .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2003, 38 (03) :389-399
[3]   Capacitive gas and vapor sensors using nanomaterials [J].
Bindra, P. ;
Hazra, A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (08) :6129-6148
[4]   Graphene electrochemistry: an overview of potential applications [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2010, 135 (11) :2768-2778
[5]   Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically-ordered silica nanochannels [J].
Cheng, Bowen ;
Zhou, Lin ;
Lu, Lili ;
Liu, Jiyang ;
Dong, Xiaoping ;
Xi, Fengna ;
Chen, Peng .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 259 :364-371
[6]   AIOOH-Reduced Graphene Oxide Nanocomposites: One-Pot Hydrothermal Synthesis and Their Enhanced Electrochemical Activity for Heavy Metal Ions [J].
Gao, Chao ;
Yu, Xin-Yao ;
Xu, Ren-Xia ;
Liu, Jin-Huai ;
Huang, Xing-Jiu .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) :4672-4682
[7]   Stripping Voltammetric Detection of Mercury(II) Based on a Bimetallic Au-Pt Inorganic-Organic Hybrid Nanocomposite Modified Glassy Carbon Electrode [J].
Gong, Jingming ;
Zhou, Ting ;
Song, Dandan ;
Zhang, Lizhi ;
Hu, Xianluo .
ANALYTICAL CHEMISTRY, 2010, 82 (02) :567-573
[8]   Using nanoparticle aggregation to give an ultrasensitive amperometric metal ion sensor [J].
Gooding, J. Justin ;
Shein, Jarred ;
Lai, Leo M. H. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (10) :2015-2018
[9]   Facile synthesis of a 3D MnO2 nanowire/Ni foam electrode for the electrochemical detection of Cu(II) [J].
Hao, Shiyun ;
Li, Jie ;
Li, Yingchun ;
Zhang, Yinghe ;
Hu, Guosheng .
ANALYTICAL METHODS, 2016, 8 (24) :4919-4925
[10]   Application of Dispersive Liquid-Liquid Micro-extraction Using Mean Centering of Ratio Spectra Method for Trace Determination of Mercury in Food and Environmental Samples [J].
Hossien-poor-Zaryabi, Mohadese ;
Chamsaz, Mahmoud ;
Heidari, Tahereh ;
Zavar, Mohammad Hossein Arbab ;
Behbahani, Mohammad ;
Salarian, Mani .
FOOD ANALYTICAL METHODS, 2014, 7 (02) :352-359