SAMPLING FROM POTTS ON RANDOM GRAPHS OF UNBOUNDED DEGREE VIA RANDOM-CLUSTER DYNAMICS

被引:0
作者
Blanca, Antonio [1 ]
Gheissari, Reza [2 ,3 ]
机构
[1] Penn State Univ, Dept CSE, University Pk, PA 16802 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA USA
[3] Univ Calif Berkeley, Dept EECS, Berkeley, CA USA
关键词
Markov chains; Potts model; random-cluster model; random graphs; SWENDSEN-WANG; GLAUBER DYNAMICS; MODEL; ALGORITHMS; TREE;
D O I
10.1214/23-AAP1939
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability p is an element of (0,1) and a cluster weight q > 0. We establish that for every q >= 1, the random-cluster Glauber dynamics mixes in optimal Theta(n log n) steps on n-vertex random graphs having a prescribed degree sequence with bounded average branching gamma throughout the full high-temperature uniqueness regime p < pu(q, gamma).The family of random graph models we consider includes the Erd & odblac;s-R & eacute;nyi random graph G(n, gamma/n), and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on Erd & odblac;s-R & eacute;nyi random graphs for the full tree uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the largest degree) for the Potts Glauber dynamics, in the same settings where our Theta(n log n) bounds for the random-cluster Glauber dynamics apply. This reveals a novel and significant computational advantage of random-cluster based algorithms for sampling from the Potts model at high temperatures.
引用
收藏
页码:4997 / 5049
页数:53
相关论文
共 60 条
[1]  
Ane C., 2000, Panoramas et Syntheses, V10
[2]  
[Anonymous], 2004, Inferring phylogenies
[3]  
BLANCA A., 2015, LIPIcs. Leibniz Int. Proc. Inform., V40, P528
[4]  
BLANCA A., 2021, LIPIcs. Leibniz Int. Proc. Inform., V207
[5]  
BLANCA A., 2021, LIPIcs. Leibniz Int. Proc. Inform., V207
[6]   Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness [J].
Blanca, Antonio ;
Gheissari, Reza .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 386 (02) :1243-1287
[7]   SAMPLING IN UNIQUENESS FROM THE POTTS AND RANDOM-CLUSTER MODELS ON RANDOM REGULAR GRAPHS [J].
Blanca, Antonio ;
Galanis, Andreas ;
Goldberg, Leslie Ann ;
Stefankovic, Daniel ;
Vigoda, Eric ;
Yang, Kuan .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) :742-793
[8]   RANDOM-CLUSTER DYNAMICS IN Z2: RAPID MIXING WITH GENERAL BOUNDARY CONDITIONS [J].
Blanca, Antonio ;
Gheissari, Reza ;
Vigoda, Eric .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (01) :418-459
[9]   Random-cluster dynamics in Z2 [J].
Blanca, Antonio ;
Sinclair, Alistair .
PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (3-4) :821-847
[10]  
Bollobas B., 2001, CAMBRIDGE STUDIES AD, DOI DOI 10.1017/CBO9780511814068